
Grid Enabling Legacy Applications through a Standard Job Submission
Interface

A. Stephen McGough, William Lee and Shikta Das
Imperial College London

London, UK
{asm,wwhl,shd}@doc.ic.ac.uk

Abstract

The potential of the Grid for users, software developers
and resource owners is well appreciated. Users of the Grid
are abstracted from its complexity, while software develop-
ers are provided with tooling which allows them to develop
applications. Resource owners are able to expose their re-
sources potentially for financial reward. However, as most
of the applications which currently exist pre-date the con-
cept of the Grid, they lack the appropriate functionality to
exploit it. In this paper we propose the use of a standards
based job submission system which is capable of deploying
legacy applications onto existing resources within the Grid
along with the use of web-based portals to expose these ap-
plications to the end users. We further propose that appli-
cations which comprise a number of legacy tasks can be
handled through the use of a workflow enactment service
submitting each of these tasks through the standards based
job submission system. We exemplify our approach through
the e-Protein project by taking their existing proteome an-
notation software and exposing it as a Grid service.

1. Introduction

The Grid [19] provides a powerful abstraction for the
use of heterogeneous computational resources. For the user
this means that the implementation used and the resources
selected can be determined automatically without the user
ever becoming aware of their existence and complexity.
Moreover, the user can be presented with a simplified view
of the infrastructure that resembles the experience of us-
ing a personal computer. A web-based portal interface is
increasingly becoming a de-facto choice for delivering soft-
ware applications. For the resource owner it provides an
environment in which they can encapsulate complex soft-
ware and computational provision, potentially for financial
reward [16], to be delivered through a browser. For the soft-

ware developer, it provides a forum in which their software
can be exposed without the need for users (or the software
developers) to own the hardware necessary to execute the
application [20]. This removes the requirement for users to
own resources, software developers to support complex in-
stallations and allows services on the Grid to determine the
best place to deploy software – to provide an appropriate
quality of service to the user.

Thus it would seem that the software developer may
make their application available as a web based service ac-
cessible through a web portal, a resource provider provide a
hosting environment environment for these services and the
end user access the application through their web browser.

This utopian view is somewhat marred by the fact that
much of the existing software developed pre-dates the exis-
tence of the Grid. The majority of existing legacy applica-
tions are based around executables – commonly referred to
as jobs – which are often platform specific. Legacy applica-
tions are often designed to be executed from the command
line on an interactive resource which is easily accessible by
the user. Without significant effort these executables cannot
be converted into web based services.

The Grid provides an environment where jobs are sub-
mitted to remote resources without the ability to interact
with them. The configuration of the remote resource is
also often unknown. The availability of libraries and other
elements that are required for execution are often difficult
to ascertain. In most cases, these executables can work in
batch mode where the inputs to the executable can be pre-
determined and sent to a resource along with the request to
run the executable. However, in some cases the executable
will require some form of interactivity during its execution.
It may be possible in some cases to alter the original exe-
cutable so that it can be run in a batch manner. However,
this is not always possible due to the unavailability of the
source code.

In many cases these executables can be wrapped inside
of an “environment container” which maps the interactive
nature and executable requirements into that of a batch job

and ensures that the environment in which the executables
run matches its requirements. Thus in general we are able
to use most existing software without the need to alter it in
any manner.

A portal interface can encapsulate the functionalities
provided by an executable that is anchored on a particular
resource. However, this prevents the software from being
made available through the Grid without tying it to a partic-
ular hardware or location. Distributed Resource Managers
(DRMs) are mechanisms for exposing many Grid resources
and allowing arbitrary executables to be enacted upon them.

There are many Distributed Resource Managers in ex-
istence capable of executing legacy code; such as Con-
dor [29], Globus [18], Grid Engine [4] LSF [6]. However,
each of these systems provides its own proprietary job sub-
mission interface using a proprietary job description lan-
guage. Thus submitting jobs to these underlying Grid fab-
rics require large amounts of knowledge to use. This ho-
mogeneity can be hidden from the end user by writing Web
portals capable of understanding each of the different un-
derlying DRM submission interfaces. However, this would
lead to highly complicated Web portal services requiring
significant work each time a DRM system updates, changes
or adds a submission interface.

In this paper we propose the use of a common (standard-
ised) job submission interface for deploying jobs onto the
Grid. This allows the Web portal implementer to concen-
trate on the usability and development of a portal service
independently of the complexity of the job submission pro-
cess. They need only be aware of one (standard) job sub-
mission interface thus allowing simpler portals which are
independent of changes in the underlying fabric of the Grid.

1.1. Application Workflows

Many applications comprise of a number of sub-jobs,
often referred to as components, which are performed to
achieve the overall application. These components may be
composed together within some form of control structure (a
control script) and submitted to the underlying Grid Fabric.
This will allow the whole application to be executed. How-
ever, it reduces the ability for services on the Grid to best
match the quality of service requests imposed by the user,
as the Grid will have to deploy the entire application to a
single resource. However, if we allow the set of components
to be exposed to the Grid independently along with a work-
flow document describing how these components interact it
is then possible for a Grid brokering service to determine
the best place for each component to be executed. This will
potentially allow more efficient execution of the workflow.
Parallelism within the workflow may be exploited and re-
silience added in the cases where resources fail.

In the next section we outline the architecture for our ap-

proach. In section 3 we describe GridSAM our standards
compliant job submission interface. We describe the use of
the Grid brokering service in Section 4 followed by a dis-
cussion of the workflow service in Section 5. The approach
of wrapping jobs within an “environment container” is dis-
cussed in Section 6. We show how we are using this ar-
chitecture within the e-Protein project to perform proteome
annotation in Section 7 before concluding within Section 8.

2. Architecture

In previous work [24, 25] we have proposed an entire
Grid workflow architecture in which elements of the archi-
tecture can be selected in an à-la-carte fashion. We illustrate
here a combination of these elements which can be com-
bined to provide a system capable of efficiently executing
legacy applications on the Grid. Figure 1 illustrates how
these elements can be combined together. We briefly de-
scribe these services below before expanding on them more
fully later in the paper.

Grid Brokering
Service

User Through
Web Portal

Web Portal
Service

Workflow
Engine

Job Submission
Service

Existing
DRM System

Figure 1. Architecture

• Web Portal. The user interface for interacting with an
application. This can be delivered through a standard
Web Browser.

• Web Portal Service. This portal should be designed
with end-user usability in mind. This element will
be specific to the application that is to be deployed.
To expose an application the developer needs to de-
velop a portal service which uses a standard job sub-
mission language to submit the whole application to
a Grid Brokering Service or if the use of Brokering
is not required the job can be submitted directly to a
Job Submission system. Alternatively if the applica-
tion consists of a number of components along with
a workflow description document, these can be sub-
mitted to the Brokering service and enacted through a
workflow Engine. We will illustrate the Portal service
for the e-Protein project in section 7.

• Grid Brokering Service. The Brokering service is
tasked with determining the “best” place to deploy
each job into the Grid. Jobs are then dispatched to the
appropriate Job Submission system for execution. The
Workflow service can be combined with the Broker-
ing service (as in our exemplar). The workflow aware
Brokering service is capable of selecting not only the
“best” place for each component in the workflow but
also ensure that the combination of these places is good
for the entire workflow to complete successfully. We
discuss the Brokering service further in Section 4.

• Workflow Engine. The Workflow engine takes the
workflow description document along with the individ-
ual components of which it is composed. The work-
flow engine is then responsible for dispatching job
submissions for the individual components according
to the sequencing constructs to ensure that the entire
workflow is enacted as required. We discuss the use of
the workflow engine in section 5.

• Job Submission System. In order to abstract away
from the heterogeneity of the underlying Grid fabric
we are developing a standards based Grid Submis-
sion and Monitoring (GridSAM) [22, 5] service. Grid-
SAM is designed to be situated between existing DRM
systems providing a standard job submission interface
into these DRM systems. The power of GridSAM
comes from its use of the emerging standards in job
submission along with its modular architecture which
makes it easy to extend GridSAM to new DRM sys-
tems. We describe GridSAM in Section 3.

• Existing DRM System. There are many DRM sys-
tems which manage submission of jobs to the underly-
ing resources. We seek to exploit as many of these as
possible without making changes to them. As we see
these as the underlying fabric of the Grid we do not
discuss them any further in this paper.

• Wrapping Executables. In order to execute an appli-
cation on a resource in the Grid it is often required to
mimic the environment which is expected by the appli-
cation. This may be as simple as ensuring that libraries
required by the application are available or more com-
plicated, such as providing a whole environment which
is able to interact with the application in such a way
that the application believes that it is operating in its
normal environment. The wrapper is discussed further
in Section 6.

3. GridSAM

There are many Distributed Resource Management sys-
tems in existence for launching jobs efficiently onto com-
putational resources. However, most systems adopt propri-
etary languages and interfaces to describe and interact with
the job launching process. This leads to the requirement
that a user needs to learn a large number of job description
languages and deployment mechanisms to exploit a wide
variety of Grid resources.

Web Services have been recognised as the preferred tech-
nology to build distributed services in the Grid context.
It provides an inter-operable approach to message-oriented
machine-to-machine interaction. Commercial adoption of
Web Services has catalysed the development of industrial-
strength platforms for deploying high-performance Web
Services. Moreover, the Grid community has gathered
pace in recent years to define standards for core function-
ality of Grid Computing. This is required to achieve inter-
operability across organisational and technical boundaries
in order to attain the vision of a global computational net-
work. In particular, the Job Submission Description Lan-
guage (JSDL) [14] standardised through the Global Grid
Forum (GGF) [10] and the evolving Open Grid Services Ar-
chitecture Basic Execution Service (OGSA-BES)[7] inter-
face from the GGF are essential standards to promote inter-
operability among DRMs.

Here we present a standards-based job submission
system, GridSAM1, undertaken as part of the Open
Middleware Infrastructure Institute (OMII) Managed
Programme[13], as one of the first systems adopting JSDL
and Web Services for job description and interaction. Grid-
SAM utilises Web Services interfaces, and conforms with
the emerging OGSA-BES specification along with the
JSDL job description language. GridSAM provides a trans-
parent and efficient bridge between users and existing DRM
systems, such as Condor [29], Globus [18] and Grid En-
gine [4]. The encapsulation allows the functions to be used
through the GridSAM Web Service as well as utilising it as
an independent library.

1Downloadable from http://www.lesc.ic.ac.uk/gridsam

J
M

L
 R

u
n

ti
m

e

Job Pipeline

Java Servlet Engine

Web Service

W
eb

 S
er

ve
r

DRM-

ConnectorA
u
th

e
n
ti
c
a
ti
o
n

A
u
th

o
ri
s
a
ti
o
n

RDBMS

Job Persistence, Stage Recovery and Scheduling API

File

Systems

DRMs

DRM-

Connector

DRM-

Connector

DRM-

Connector

DRM-

Connector

Virtual File System & Shell Abstraction API

Requests / Response

SOAP - WS-Security

 over HTTPS

Figure 2. GridSAM System Architecture

3.1. GridSAM Architecture

Int this section we present the architecture for GridSAM
as illustrated in Figure 2. Requests for execution of jobs
arrive through the Web Service interface in JSDL docu-
ments while the underlying DRM system is interacted with
through a collection of DRMConnectors representing dif-
ferent functionalities of the DRM.

The objective of GridSAM is to let users execute ap-
plications through existing distributed resource managers
transparently. The Transparency is achieved through the
use of a common job description language, JSDL, and a
uniform networked access interface, Web Services, OGSA-
BES. The core function of GridSAM is to translate the sub-
mission instructions specified in a JSDL document to a set
of resource specific actions to stage, launch and monitor
a job. This function is encapsulated in the GridSAM Job
Management Library (JML).

The role of the JML is to orchestrate the execution of a
set of DRMConnectors - reusable components encapsulat-
ing job management actions. These components are com-
posed by the deployer into a network of stages resembling a
job launching pipeline. The JML runtime alleviates system
engineers from programming common tasks, such as per-
sistence, failure recovery and concurrency management by
exposing these through the JobManager API.

The GridSAM Web Service makes available the JML
through a Web Service interface. It is implemented as a Java
JAX-RPC-compliant Web Service deployable in any Java
Servlet compliant container. This opens up the choice of
deployment platforms depending on the scalability require-
ments. The Web Service interface makes use of HTTPS
transport security and the OMII WS-Security framework to
protect message exchange as well as authenticating and au-
thorising users. The Web Service interface demonstrates the
use of the JML as a networked multi-user service. It is en-
visaged that the JML can be embedded in other frameworks

(e.g. portal, Grid applications) offering different modes of
interaction.

Below we discuss further some of the advanced features
of GridSAM which help in abstracting both the user of
GridSAM from the underlying fabric of the Grid and also
the developer of DRMConnectors for GridSAM thus mak-
ing it easier for new DRM systems to be exposed.

Submission pipeline as a network of stages. The Grid-
SAM pipeline is constructed as a network of stages con-
nected by event queues. This design is inspired by the
staged event-driven architecture (SEDA) [23]. Instead of
treating each job submission request as a single submission
action, it is decomposed into robust stages that may be in-
dividually conditioned to load by thread-holding or filtering
its event queue. A number of exemplar systems (e.g. Ha-
boob web server) have demonstrated the use of this princi-
ple to deliver robustness over huge variations in load.

Figure 3 depicts a pipeline that launches jobs onto a Con-
dor pool. Each stage in the pipeline is an implementation
of the DRMConnector event handler interface. DRMCon-
nector instances encapsulate a specific functionality that is
triggered by an incoming event (e.g. stage-in event) asso-
ciated with a job. Once the DRMConnector has completed
its operation, it may enqueue events onto another stage. It
effectively passes control to the next stage in the pipeline
asynchronously. Long-running stages that perform block-
ing operations (e.g. reading files) can potentially be broken
down further into sub-stages by using non-blocking I/O li-
braries.

The explicit control boundary, introduced by the queue
between stages, improves overall parallelism in the system.
The simple message-oriented event-based interface allows
system engineers to focus on the DRM-specific logic, rather
than the details of concurrency and resource management.
Moreover, the event-based interface echoes the Command
design pattern[17] that encourages component reuse and ac-
tion encapsulation. For example, the Forking and Secure

JSDL

Validation

|||||
Stage-in

||||| Classad

Generation

|||||

Condor

Submission

||||| Condor

Monitor Poll

|||||
Stage-out

|||||
Clean-up

|||||

File

System

I/O

Condor

Pool

Shell interaction

File

System

I/O

Figure 3. Submission pipeline for Condor job in GridSAM

Shell pipeline share most of the pipeline components apart
from the launching stage. Representation of state is com-
pletely encapsulated in the incoming event message, the
DRMConnector can be distributed easily across a cluster
without complex state management.

Fault recovery. The adoption of an event-based archi-
tecture allows individual stages to be restarted upon failure
by persisting the event queues and the information associ-
ated with each job instance. The GridSAM JML provides
the JobInstanceStore API for persisting per-job informa-
tion that needs to be carried between stages and inspected
for monitoring purpose; GridSAM uses the Hibernate [26]
toolkit to provide transactional object-to-relational map-
ping. DRMConnector implementations are agnostic to the
underlying persistence mechanism (e.g. in-memory replica-
tion, RDBMS persistence). JobInstance objects are stored
in JDBC compliant RDBMS databases along with the event
queues by default.

When the JML is initialised the event queues and the
scheduler are reinstated. A previously failed job pipeline
will be restarted from the beginning of the failed stage in-
stead of the beginning of the pipeline. A stage can per-
form the necessary recovery action by undoing the failed
resource-specific actions or perform the idempotent opera-
tion again.

Concurrency management. Each stage in the pipeline
is served by a pool of threads that consume events from the
stage queue and invoke the stage-specific DRMConnector.
GridSAM builds on the Quartz framework [27] to schedule
stages and allocate threads. Welsh et al [23] described in the
original SEDA proposal the role of an application controller
to dynamically self-tune resource management parameters
based on run-time demands and performance targets. For
example, the number of threads allocated to a stage can be
determined automatically without a priori knowledge of job

arrival rate and perceived concurrency demands. Although
Quartz currently lacks the dynamic load adaptation support,
it provides advanced date-based scheduling, fault recovery
and clustering support that is unavailable in other frame-
works. This can be accommodated in the future with the
extensible JML framework using the Java Management Ex-
tension as an instrumentation tool.

4. Grid Brokering Service

GridSAM provides a mechanism to transparently exe-
cute a job on a remote resource within the Grid. However,
it provides no mechanism to select which resources to use.
Although many of the DRMs that GridSAM sits on-top of
may be able to perform this for their local set of resources.
Thus to make the best use of the Grid a brokering mecha-
nism is required which is capable of selecting the best re-
sources (and hence the best GridSAM instance) for a par-
ticular job.

In previous work [24, 31, 30] we have proposed an ar-
chitecture for a brokering (scheduling) system for the Grid.
We leverage this work for this paper. We discuss here how
to handle a workflow though a single job submission can be
considered as a workflow with only one component without
loss of generality.

The broker takes an abstract workflow and translates this
into a concrete workflow in which the software selected for
each component along with the resource on which to ex-
ecute the component have been determined. This process
may be carried out in a one pass process [31] or through
a constantly updating process [30]. In either case the ele-
ments of the worklfow which have been made concrete can
be sent to a workflow service for execution. The broker
monitors the workflow to determine if it performs as ex-
pected. If the workflow does not perform as expected or the

broker becomes aware of new functionality within the Grid
then it may choose to re-evaluate the workflow [24]. Many
of the workflow optimisation stages presented in this paper
can be applied here in the brokering service.

It should be noted that the brokering service is tasked
with providing the “best” results for all users of the Grid.
It must balance all user requirements against the resource
owners desires and the software providers desires. It is a
hard task to balance all of these requirements and desires
and is an area of ongoing research.

We have developed a Grid brokering framework for
the Imperial College e-Science Networked Infrastructure
(ICENI II) [24] which we are using for this work. The func-
tionality of this service and the brokering algorithms that are
available for it is an area of open research. We are tracking
the standardisation work going on within the GGF in the
areas of brokering through both the Open Grid Services Ar-
chitecture (OGSA) [9] and OGSA-Resource Selection Ser-
vice (OGSA-RSS) [8] working groups.

5. Workflow Service

Often a user will make use of a number of separate ap-
plications. The user may choose to execute each of these
applications in turn by making separate job submissions to
the Grid. This may result in hundreds if not thousands of
calls. It is therefore more convenient to use a workflow ser-
vice which can orchestrate all of these job submissions. The
workflow service is tasked with taking the set of these com-
ponents and a workflow description document and ensuring
that these items are enacted on the appropriate resources.

Our approach here is to use off the shelf commodity so-
lutions wherever possible. As such we are adopting the
Business Process Execution Language (BPEL) [15] work-
flow description language and are working with the Ac-
tiveBPEL [1] workflow engine.

Although the use of workflows may be the most appro-
priate paradigm for dealing with multiple job submissions
this may not be the best medium to present to the end user.
The end user should be protected from the need to learn
workflow languages or theory. Instead the Web Portal ser-
vice should be designed in a manner that provides an inter-
face to the end user which matches in with the knowledge of
the user and then translates this into a workflow document.

6. Wrapping Executables

Legacy applications often need a specific environment in
which they can run. This may require (though is not limited
to): libraries; specific files in pre-defined locations; access
to databases; along with the handling of interaction with
the executable. Instead of submitting the actual legacy ap-
plication to a Grid resource an environment container, or

wrapper, is deployed. The wrapper is responsible for gener-
ating the environment which is required for the legacy ap-
plication, dealing with interactions with the application and
cleaning up after the execution.

The complexity of the wrapper depends on the require-
ments of the application to be wrapped. The closer an ap-
plication is to a batch executable the less the wrapper is re-
quired to provide. In general the actions provided by the
wrapper are as follows:

• Generate file environment. The wrapper needs to
place relevant files on the resource in locations where
the application expects to find them. This may be
to uncompress a set of libraries and files into a pre-
determined location.

• Set up environment variables. In many cases envi-
ronment variables are required for the application to
operate correctly. These need to be set up at this stage.

• Database access. If the application requires access
to a database this access needs to be provided at this
stage. This may be achieved through the use of OGSA-
DAI [12] or through a SSH tunnel [28].

• Enacting the application. Starting up the application.

• Application interaction. This can often be achieved
through streaming the standard input and output for the
application through the wrapper with the wrapper pro-
viding the correct input as appropriate.

• Collecting files for staging back. This may be to com-
press a large number of files into a single archive which
can be staged back from the resource.

• Cleaning up. Once the application has finished all
changes and temporary files need to be removed.

7. Proteome annotation in e-Protein

While various tools are available that solve the larger
problems of protein structure prediction, it is necessary to
build software to integrate them together to perform pro-
tein annotation. The e-Protein [3] project is a pilot initia-
tive funded by the Biotechnology and Bioinformatics Sci-
ences Research Council (BBSRC), to combine structural
and functional genome annotation databases from Imperial
College London, University College London and European
Bioinformatics Institute, through a single interface using
the Distributed Annotation System (DAS) [2] and utilis-
ing Grid middleware technology. This is an on-going, open
source initiative allowing a bioinformatician to functionally
annotate their proteins sequences.

We have taken a bioinformatics workflow developed by
the Structural Bioinformatics Group at Imperial College

Figure 4. The components within the e-Protein workflow

London. This provides a structural and functional database,
called 3D-GENOMICS [21] along with an annotation work-
flow. We have developed a Web Portal for running the an-
notation workflow over the Grid, called 3D-ANNOTATE.
Allowing the user to select a wide range of analysis tools
and automatically apply them to each proteome of their re-
quirement.

3D-GENOMICS: The 3D-GENOMICS database pro-
vides a range of structural and functional information for
protein sequences from sequenced genomes. It allows
queries to find genes within selected organisms that en-
code proteins with particular three-dimensional folds. At
present there are 261 genomes available in the database, out
of which homology models are available for the protein se-
quences of 13 genomes. The protein annotation for each
organism is loaded into tables within a relational database.

The annotation workflow comprises of a number of Perl
programs which perform the following tasks: gather ge-
netic information from the 3D-GENOMICS database; pro-
cess this data which may include using an existing bioinfor-
matics tool sets; submit the results from this work back into
the 3D-GENOMICS database. These Perl programs form
the components of the workflow depicted in Figure 4.

Originally this workflow was realised through a hard-
coded Perl program which calls each of the components as
required. Note that not all components in the workflow will

be used for each annotation. The bioinformatician can se-
lect those which are needed to perform the task required.

3D-ANNOTATE: In order to convert this application to
the Grid we have replaced the Perl workflow with a portal
service (as depicted in Figure 5) called 3D-ANNOTATE.
This portal allows the user to select the appropriate compo-
nents (referred to as filters – thus matching the users knowl-
edge and environment) along with the proteome to anno-
tate. This abstracts the user from the understanding of the
architecture or the workflow requirements for performing
the annotation.

Once the bioinformatician has selected the components
required for the current run of the application a workflow
description is generated and submitted to the Brokering ser-
vice.The components of the workflow can then be submitted
through GridSAM.

7.1 The 3D-ANNOTATE Architecture

Our system is primarily designed to support annotation
of proteomes via a workflow system. The architecture can
be defined as the series of stages from the generation of the
goal description, workflow, execution, to the point where
results are collated and staged to the location required by the
user [24]. Here the goal description stage is our Web Portal.
A typical workflow includes: requirements, optimization of

Figure 5. The e-Protein Web Portal

resources and execution of the jobs.
The process for 3D-ANNOTATE is divided into the fol-

lowing levels (see Figure 6):
Level 1: The first level comprises a Graphical User In-

terface, which offers a Web Portal to submit biological se-
quences. Users can indicate the location of an input se-
quence files in FASTA format, which may contain multi-
ple sequences, and select the choice of applications (filters)
to be run on the given sequence. Once the file is submit-
ted, a Java Control Program records the requests and splits
the sequences into single files and submits them to the 3D-
GENOMICS database. The database returns a list of se-
quence IDs for each sequence which is utilised for process-
ing in the next level.

Level 2: The second contains the workflow service and
the brokering service. Each sequence will cause the ex-
ecution of the workflow derived from the users inputs in
Level 1. Each workflow component will be deployed by a
call to the appropriate GridSAM instance through an auto-
generated JSDL document, detailing the path for the appro-
priate wrapper. GridSAM returns a handle which can be
used to determine when the wrapper has completed.

Level 3: The third level involves executing elements of
the annotation pipeline as specified by the workflow. Grid-
SAM submits the wrappers to the underlying DRM sys-

tems. The wrapper will execute and thus execute the com-
ponent as required.

7.2. e-Protein Application Wrapping

Although the components within the workflow are rea-
sonably portable there are still issues of portability with
them which arise from the use of the existing bioinformat-
ics tool sets and the need for access to databases. In order
to ensure that all the required elements for the component
are available wrapping technology is used. The wrapper
contains a copy of the Perl program required for execution
along with any required Perl libraries, data files and the
bioinformatics tool sets that are required. In this case all
of the applications were originally written to run in a batch
mode, thus there is no need to explicitly handle input and
output of the components. Some of the original bioinfor-
matics tool sets did require wrappers, though these had al-
ready been wrapped as part of the 3D-GENOMICS through
Perl wrappers. On execution of jobs GridSAM executes a
wrapper job for each of the components in the workflow.
The wrapper (implemented as a shell script) decompresses
a (tar) archive containing the Perl component along with
any libraries and bioinformatics tool sets; executes the Perl
component; before removing any files generated on the exe-

Web Interface

DRM

Job

Scheduler

Java Control
Program

Workflow
Pipeline

Job

Document

3D-
GENOMICS

Web Portal

DRM

Job

Control
Program

Workflow

GridSAMGridSAM

Job

Job Description

Job Identifier

Sequence files

SSH tu
nn

el

Dasty Viewer

Level 1

Level 2

Level 3

Figure 6. The 3D-ANNOTATE architecture

cution resource. As the Perl programs are reliant on having
access to the 3D-GENOMICS databases they require access
to the databases currently held at Imperial College London.
This is currently achieved through the use of secure shell
tunnelling of the database communications. However, we
seek to generalise this process by adopting database access
through OGSA-DAI [12].

This may make some of the components platform spe-
cific. This platform dependence can be handled through the
resource requirements expressed in the JSDL document and
appropriate resources selected through the brokering ser-
vice.

7.3. Implementation Experiences

We have found that decomposing the application into a
number of components controlled through a workflow en-
gine shows benefits in execution of this application. An-
other group within the e-Protein project have kept the sin-
gle Perl application and submitted this to the Grid. Their
effort to use this application on the Grid was small as the
whole application could be wrapped as a single Grid task
with a simple control program. However, without the de-
composition of the components the entire application needs
to be run on a restrictive subset of the Grid. Those resources
which match all the requirements of the entire workflow. In

the case of the 3D-GENOMICS work only one of the com-
ponents has tightly restrictive resource requirements this
has lead the other group to only be able to use this small
subset of the Grid. Thus highly overloading this subset
of resources. However, our approach allows those com-
ponents without the restriction to be submitted to a larger
set of resources. This not only allows better usage of the
Grid but it also reduces the load on the small subset of the
Grid capable of running the restrictive component. Thus
we have been able to deploy the 3D-ANNOTATE applica-
tion over resources based at Imperial College London, Uni-
versity College London and resources on the National Grid
Service (NGS) [11].

8. Conclusion

In this paper we have shown how existing legacy appli-
cations can be mapped into a Grid environment by the use
of a simple architecture which exposes the application to
the user through a simple web-based portal back ending to a
standards based jobs submission interface (GridSAM). This
allows for abstraction at different levels within the system.
The end user is abstracted from the complexity of the Grid,
while the portal developer is abstracted away from the het-
erogeneity of the underlying Grid fabric.

Further we have shown that if the application is com-

posed of a number of separate components then these com-
ponents along with a workflow description document can
be submitted to the Grid. This has the added benefit of al-
lowing the Grid to best determine where each part of the
workflow should be executed in order to meet the require-
ments of users of the Grid.

We have constructed our architecture from elements
within the ICENI II system and demonstrated how they can
be used in Grid-enabling the 3D-GENOMICS legacy appli-
cation.

9 Acknowledgements

We would like to thank the Open Middleware Infrastruc-
ture Institute Managed Programme who have funded the
“GridSAM Simple Web Service for Job Submission and
Monitoring” project.

References

[1] activeBPEL. http://www.activebpel.org/.
[2] Biodas. http://www.biodas.org.
[3] e-Protein. http://www.e-protein.org/.
[4] Grid Engine. http://gridengine.sunsource.

net/.
[5] GridSAM - Grid Job Submission and Monitoring Web Ser-

vice. http://gridsam.sourceforge.net.
[6] Lsf. http://www.platform.com/.
[7] OGSA Basic Execution Services (OGSA-BES-WG) .

https://forge.gridforum.org/projects/
ogsa-bes-wg/.

[8] OGSA Resource Selection Services (OGSA-RSS-WG)
. https://forge.gridforum.org/projects/
ogsa-rss-wg/.

[9] Open Grid Services Architecture (OGSA-WG) . https:
//forge.gridforum.org/projects/ogsa-wg.

[10] The Global Grid Forum. http://www.ggf.org.
[11] The National Grid Service. http://www.ngs.ac.uk/.
[12] The OGSA-DAI Project. http://www.ogsadai.org.

uk/.
[13] The Open Middleware Infrastructure Institute. http://

www.omii.ac.uk.
[14] A. Anjomshoaa and F. Brisard and M. Drescher and D.

Fellows and A. Ly and S. McGough and D. Pulsipher and
A. Savva . Job Submission Description Language (JSDL)
Specification v1.0 . http://www.gridforum.org/
documents/GFD.56.pdf.

[15] BPEL4WS. http://www6.software.ibm.com/
software/developer/library/ws-bpel.pdf.

[16] J. Cohen, W. Lee, A. Mayer, and S. Newhouse. Making
the Grid Pay - Economic Web Services. In Building Service
Based Grids Workshop, GGF11, Honolulu, Hawaii, USA,
June 2004.

[17] E. Gamma and R. Helm and R. Johnson and J. Vlissides.
Design patterns: Abstraction and reuse of object-oriented
design. In Lecture Notes in Computer Science, volume 707,
pages 406–431. Springer, 1993.

[18] I. Foster and C. Kesselman. The Globus Project: A Sta-
tus Report. In IPPS/SPDP ’98 Heterogeneous Computing
Workshop, pages 4–18, 1998.

[19] I. Foster and C. Kesselman, editors. The Grid: Blueprint for
a New Computing Infrastructure. Morgan Kaufmann, July
1998.

[20] Jeremy Cohen and John Darlington and William Lee. Pay-
ment and Negotiation for the Next Generation Grid and
Web. In UK e-Science All Hands Meeting, Nottingham, UK,
sep 2005.

[21] K. Fleming and A. Muller and R.M. MacCallum and M.J.E.
Sternberg. 3D-GENOMICS: A data base to compare struc-
tural and functional annotations of proteins between se-
quenced genomes. Nuc. Acid Res, 32:D245–D250, 2004.

[22] W. Lee, A. McGough, and J. Darlington. Performance Eval-
uation of the GridSAM Job Submission and Monitor ing
System. In UK e-Science All Hands Meeting, pages 915–
922, Nottingham, UK, Sept. 2005. ISBN 1-904425-53-4.

[23] M. Welsh and D. Culler and E. Brewer. Seda: An architec-
ture for well-connected scalable internet services. In Eigh-
teenth Symposium on Operating Systems Principles (SOSP-
18), October 2001.

[24] A. McGough, J. Cohen, J. Darlington, E. a Katsiri, W. Lee,
S. Panagiotidi, and Y. Patel. An End-to-end Workflow
Pipeline for Large-scale Grid Computing. Journal of Grid
Computing, pages 1–23, Feb. 2006.

[25] A. McGough, W. Lee, and J. Darlington. ICENI II Architec-
ture. In UK e-Science All Hands Meeting, pages 441–448,
Nottingham, UK, Sept. 2005. ISBN 1-904425-53-4.

[26] T. H. Project. Hibernate. http://www.hibernate.
org.

[27] Q. E. Scheduler. Quartz enterprise scheduler. http://
quartzscheduler.org.

[28] T. Ylonen. The Secure Shell (SSH) Protocol Architec-
ture. http://www.ietf.org/rfc/rfc4251.txt?
number=4251.

[29] Thain, D., et al.,. Condor and the Grid. In F. Berman,
A. J. G. Hey, and G. Fox, editor, Grid Computing: Making
The Global Infrastructure a Reality. John Wiley, 2003.

[30] Y. Patel and A.S. McGough and J. Darlington. QoS sup-
port for Workflows in a volatile Grid. In Submitted for the
Workshop on Grid Computing 2006 (GRID2006).

[31] L. Young, A. McGough, S. Newhouse, and J. Darlington.
Scheduling Architecture and Algorithms within the ICENI
Grid Middleware. In UK e-Science All Hands Meeting,
pages 5–12, Nottingham, UK, Sept. 2003. ISBN 1-904425-
11-9.

