
Workflow Enactment in ICENI

Stephen McGough,Laurie Young, Ali Afzal, Steven Newhouse and John Darlington

London e-Science Centre, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
Email: lesc-staff@doc.ic.ac.uk

Abstract. Workflow specification and enactment is a critical operation in e-science. In this paper we
describe how an abstract workflow, specified by an end-user in the form of an Execution Plan, is instan-
tiated within the ICENI environment through the enactment pipeline. The pipeline starts with the work-
flow specification, includes the mapping of work onto resources through a workflow enabled scheduler
which is able to make use of performance results captured from previous executions within the ICENI
environment, and ends with the orchestration of the concrete execution plan on the specified collection
of distributed resources. We show that ICENI is capable of deploying the specified components of the
workflow over the available resources.

1 Introduction

The ICENI (Imperial College e-Science Network
Infrastructure) uses an XML based language to de-
scribe workflows that are submitted for execution
(see [4, 7]). The workflow describes a collection of
components and the links between them (see Fig-
ure 1). These workflows are called Execution Plans
(EP). When EPs are submitted into the ICENI envi-
ronment they are abstract in nature, we are using the
workflow definitions here from the NeSC e-Science
Workflow Services Workshop [2].

Linear
Generator

Linear
Solver

Vector
Output

Vector
Output

Fig. 1: A simple ICENI Workflow

ICENI describes components within the EP in
terms of meaning, behavior and implementation.
The meaning of a component is the high level de-
scription of the work the component performs and
the dataflow of the component. The behavior of a
component is the notion of control flow through the
component, while the implementation of a compo-
nent describes the algorithm used to implement the
component, the language used and the data-types
and the ports (methods) of the component. Each
component meaning may have multiple behaviors
and each behavior may have multiple implementa-

tions. For further details on the ICENI EP and com-
ponents system see [7].

Unless specifically required the components (or
jobs) that make up the submitted workflow are de-
scribed in terms of their meaning as opposed to their
implementation and/or the resources to deploy onto.
Thus the workflow at this stage is spatial in its na-
ture and oriented around data flows. For example if
a component was required to solve a set of linear
equations the description in the EP would merely
ask for a linear solver. The user may wish to specify
a particular implementation (such as LU factoriza-
tion), in which case this can be specified within the
EP. The user may also wish to specify a particular
resource and/or code implementation specified in a
similar manner.

The Enacment pipeline can be seen as a pipeline
of stages which are performed in order to move from
an abstract EP (workflow), through to a concrete
(fully qualified components over a suitable subset
of the available resources) workflow, and an instan-
tiation of the concrete workflow onto the appropri-
ate subset of Grid resources. By using the meta-
data provided by component implementations, per-
formance repositories and resources, ICENI is ca-
pable of mapping these abstract EPs through to in-
stantiated running applications. This is achieved by
matching each component’s meaning with an ap-
propriate behavior and implementation description.
The matching includes determining which imple-
mentation is best to use on the resources that will be
available during the lifetime of the workflow, where
‘best’ is defined by some combination of user and
resource owner metrics. Information about the com-
ponents is combined with performance data in order
to compute which components will be executing at
the same time. This allows the scheduler to select a
concrete workflow with appropriate set of resources

Proceedings of the UK e-Science All Hands Meeting 2004, © EPSRC Sept 2004, ISBN 1-904425-21-6

894



that helps to minimise the inter-component interfer-
ence.

We present here the architecture used to achieve
this, consisting of schedulers, performance reposito-
ries and launching mechanisms, which can include
resources capable of delivering advanced reserva-
tions.

In section 2 an overview of the ICENI enact-
ment system is provided. Section 3 describes the
scheduling processes to convert an abstract work-
flow into a concrete workflow. Section 4 details the
process of taking the concrete workflow and deploy-
ing it across the available resources including a de-
tailed description of the mechanism used to create
advanced reservations in ICENI. This section also
gives a breakdown of how the ICENI Grid Con-
tainer facilitates the communication between com-
ponents.

2 The Workflow Pipeline in ICENI

In this section we present an overview of the ICENI
enacment system. This is presented in the order that
the enactment pipline will be used in order to deploy
a workflow. See figure 2.

2.1 Execution Plan (EP)

The Enactment pipeline starts with the generation of
an abstract EP. Abstract workflows can be generated
manually or through a graphical interface. ICENI
makes use of the Netbeans Application Framework
to provide a drag and drop workflow generation
tool. This tool discovers, through a OGSI gateway,
the components that are available within the ICENI
environment and allows the user to construct work-
flows from these components. The abstract work-
flows can be checked for correctness at this stage
and then submitted to an appropriate scheduler. Net-
beans allows the user to inspect the concrete work-
flow at the end of the scheduling cycle and moni-
tor the execution of the workflow at runtime. This
EP is passed to the Scheduling Service which uses
the services of the performance Repository, secu-
rity authority and software repository to select the
appropriate resources and implementations for the
components.

Once the resources, where components will be
deployed, have been determined the process of
launching the components onto the resources is un-
dertaken. The ICENI environment provides a num-
ber of Launchers each of which is capable of
launching over different architectures. Components
can be either launched directly onto these resources,
or if they are still to be scheduled placed into a

virtual space (or “Green Room”) awaiting schedul-
ing at a later stage. The term “Green Room” is
taken from the theatrical world; actors will wait
in this room awaiting their time on stage. Some
of the launchers allow for advanced reservations.
The scheduler will make an advanced reservation
on these resources and place the current compo-
nent into the “Green Room” – providing a pre-
deployment holding area.

Each resource within the EP will be sent, via its
Launcher, a JDML (Job Description Markup Lan-
guage) document detailing the work that needs to
be performed. In the case of an ICENI job this will
launch a Grid Container on the resource which will
take the concrete EP and instantiate the components
that are on its resources.

Deployed components within ICENI run within
a Grid Container, which provides the mechanism for
inter-component communication and event notifica-
tion. For each resource used in the workflow by a
user there will be one Grid Container which may
handle multiple components. The Grid Container is
also responsible for orcastrating the components.

3 Scheduling

Most scheduling algorithms do not attempt to search
the entire problem space to find the optimal concrete
workflow, as this is an NP-hard problem. Instead,
heuristics are used to approximate the optimal solu-
tion. Thus the aim of most schedulers within ICENI
is to map the abstract components to a combination
of resources and implementations that is both effi-
cient in terms of execution time of the workflow
and in terms of the time to generate the concrete
workflow. Components need not all be deployed at
the same time: lazy scheduling of components and
the use of advanced reservations help to make more
optimal use of the available resources for both the
current and other users.

The scheduling framework in ICENI is responsi-
ble for taking an abstract workflow and determining
the appropriate implementations and resources to
use. The framework allows for “pluggable” schedul-
ing algorithms which is used to determine these
mappings. A number of scheduling algorithms have
been implemented including game theory sched-
ulers and simulated annealing schedulers. These
schedulers have been programmed to be workflow
aware. Thus the scheduling of components depends
not only on the performance of a component on a
given resource, but also on the affect this will have
on the other components in the workflow. Described
below are the general steps taken to evaluate a suit-
able mapping of components onto resources.

Proceedings of the UK e-Science All Hands Meeting 2004, © EPSRC Sept 2004, ISBN 1-904425-21-6

895



Scheduling
Framework

Scheduler

Appli-
cation

Mapper

Software
Resource

Repository

Iceni
Identity
Manager

Performance
Repository

Launching
Framework

Advertiser Launcher

Grid
Container

Abstract
EP Concrete

EP

JDML

ICENI Communication

Workflow Pipeline

Fig. 2: The ICENI Workflow Pipeline

As the components that make up the abstract
EP only describe the meaning of what should be
carried out (we define this to include the dataflow
between components) the first task of the Schedul-
ing Service is to match these component mean-
ings with component implementations. There may
be many component implementations matching any
given component meaning. The Software Reposi-
tory provides the details of all components match-
ing a given meaning. Once the implementations are
known then selection can be performed as to which
implementation should be used and on which re-
source.

To select an appropriate implementation on
an appropriate resource the Scheduling Frame-
work feeds the EP into the “pluggable” Scheduler,
which may be workflow aware. The scheduler can
then speculativly match implementations with re-
sources, using the “pluggable” application mapper.
The Scheduler can then interrogate the performance
repository in order to obtain estimates on the ex-
ecution times for these implementation / resource
combinations. With this information and informa-
tion gathered from the resources that have been ad-
vertised into the ICENI system, via their Launchers,
the scheduler can determine an appropriate mapping
of the components over the resources. Schedulers
may support the notion of lazy evaluation, in which
case only those components currently required are
scheduled. Other components in the workflow are
left unscheduled until required.

A number of equally optimal concrete work-
flows are selected using the attached heuristic
scheduling algorithms. Performance information is
then utilised to predict both the duration of the entire
application and the times at which each component
is expected to begin execution. The predicted com-
ponent start times for each concrete workflow are
then passed to the ICENI reservation service, which
responds with a single concrete workflow, including
any reservations it was able to make.

Below the stages involved in scheduling are de-
scribed in more detail, this is also illustrated in fig-
ure 3. It should be noted that not all these steps

need to be performed completely (or at all) in or-
der to generate a mapping. If all the steps outlined
are completed then the result will be an exhaustive
search of the available component/resource space.
This form of search is often very inefficient due
to the size of the problem space. The main aim of
the scheduling algorithms used here is to determine
how to traverse the component/resource space in or-
der to obtain a “reasonably” optimal mapping with-
out the expense of searching the whole space.

– Enumerating the possible Concrete Work-
flows The first stage of scheduling the work-
flow is to find appropriate implementations of
the components. This is performed by the appli-
cation mapper. The mapper searches through all
known implementations that match each com-
ponents meaning. This may lead to a large
number of concrete workflows which match
the abstract workflow. At this stage each con-
crete workflow is checked for consistency and
whether the user is allowed to use it. Consis-
tency checks are made to ensure that the be-
havior between components match, ie the con-
trol flow between components is valid. Further
consistency checks are made to ensure that the
data types passed between components match.
Each component within ICENI has it’s own ac-
cess policy. This is used to prune the component
implementations further by removing those the
user does not have access. The ICENI Identity
Manager is used to determine those components
a user is allowed access to, this is determined by
the components access policy.

– Pruning the Resource SpaceOnce implemen-
tations of components are known the possible
resources where the component may be exe-
cuted can be determined. The metadata stored
about each component implementation contains
information about the resource requirements
for running, along with any pre-required soft-
ware that needs to be available on the resource.
Each resource within ICENI will also have it’s
own access policy. This can be used, with the

Proceedings of the UK e-Science All Hands Meeting 2004, © EPSRC Sept 2004, ISBN 1-904425-21-6

896



Identity Manager, to further prune the resource
space.

EP with
Implemen-
tation &
Resource

EP with
Implemen-
tation &
Resource

Abstract
EP

Aplication
Mapper

EP with
Implemen-
tation

EP with
Implemen-
tation &
Resource

Resource
Mapper

EP with
Implemen-
tation &
Resource

Prune
Resources

Concrete
EP

Scheduler
Selects best

Concrete
EP

Make
Reservation

Generate
JDML docs

JDML JDML JDML

Scheduling
Algorithm

Fig. 3: The stages involved in scheduling

At this stage a set of concrete workflows can
be generated by matching possible components
with valid resources.

– Selection of the “best” concrete workflow
The “best” workflow is defined by some user-
defined criteria of the factors that are impor-
tant to them. This could be based around quick-
est execution time, “cheapest” execution (where
resources are priced) or some other metric,
or combination of metrics. The techniques for
combining these metrics and accurately model-
ing the users, resource owners and grid man-
agers requirements is an area of current re-
search [9].
In order to evaluate the metrics for a given
workflow it is almost always necessary to deter-
mine the execution time of each component in
the workflow. This can be achieved by the use
of the performance repository. The repository
gathers information about the execution times
of components on different resources. This in-
formation can be interigated during the schedul-
ing phase in order to get a prediction of the ex-
ecution time of a component.
A number of scheduling algorithms have been
developed for use in ICENI, these include ran-
dom, best ofn random, simulated aneiling and
game theory schedulers [9]. These schedulers
can be made “workflow aware” so that they take
the whole worflow into account when schedul-
ing each component.

Lazy Scheduling / Deployment In many work-
flows it may be beneficial not to map all the com-
ponents to resources at the outset. This may be due
to the fact that it is not possible to determine the
execution time of a given component until further
information is obtained by running previous compo-
nents in the application. It may also be desirable to
delay mapping until a later time in order to take ad-
vantage of resources and/or component implemen-
tations that may become available during the life-
time of the workflow. Certain Launchers are capa-
ble of handling advanced reservations (see below),
in which case the scheduler will allocate a resource
for the component to run on but the deployment of
the component will not happen until the reservation
is active.

The metadata held about a component imple-
mentation indicates whether a component can bene-
fit from lazy scheduling and or advanced reserva-
tions. The scheduler may then then decide to ig-
nore these components for the purpose of map-
ping. When the rest of the components are deployed
to resources all components that are not currently

Proceedings of the UK e-Science All Hands Meeting 2004, © EPSRC Sept 2004, ISBN 1-904425-21-6

897



mapped to a resource (or to a future reservation on
a resource) are instantiated in a virtual space (re-
ferred to as the “Green Room”). Components in
the “Green Room” are able to communicate with
other instantiated components. The only valid oper-
ations that may be called on components held in the
“Green Room” are those that add configuration data
to the component, any call that requires computa-
tion will cause the component to be scheduled (see
below).

Scheduling of components contained in the
“Green Room” can be triggered by one of two
events. If an already running component tries to
communicate with a component in the “Green
Room” with more than a configuration call then
the component will trigger a scheduling operation.
Alternatively the scheduler, which is aware of the
time when a component should be required can pre-
emptivly start scheduling so that the component is
made real (just) before it is required. Components
which hold advanced reservations will remain in
the “Green Room” until the start of their reserva-
tion slot. At this time the Launcher will be given the
components to deploy there.

4 Reservations and Co-allocation

The Reservations Service attempts to co-allocate all
the resources required for the execution of the work-
flow. It does so by entering into negotiation with the
appropriate Launcher for each resource in order to
make advanced reservations for the time and dura-
tion specified in the concrete workflow. The negoti-
ation protocol is based on WS-Agreement [8].

Advanced reservations can only be created if
the launcher/resource supports them, otherwise the
scheduler has to resort to best-effort service with re-
gards to the particular resources that could not be
reserved. If the negotiation fails, i.e. the resource
cannot create a reservation satisfying all of the ap-
plication’s constraints, the reservations service can
consider alternative schedules.

4.1 Instantiating Jobs from the workflow

The process of instantiating components onto re-
sources is handled by the ICENI Launching Frame-
works. There can be multiple Launching Frame-
works within an ICENI environment with each
framework representing one or more resources.
Each launching framework is capable of deploying
jobs through one launching technique using the at-
tached “pluggable” Launchers.

The Scheduler Framework collects all compo-
nents that are to be deployed onto the same resource
and generates a Job Description Markup Language

(JDML) document to represent the deployment of
these components. These JDML documents are sent
to the appropriate Launchers and describe how to in-
stantiate the workflow on that resource through the
use of the ICENI Grid Container.

There can be multiple Launching Frameworks
within an ICENI environment with each framework
representing one or more resources. Each launch-
ing framework is capable of deploying jobs through
one launching technique using the attached “plug-
gable” Launchers. On receiving a JDML document,
the Launching Framework will pass this document
down to the attached Launcher which translates the
JDML into a format the local resource or DRM can
handle. The Launcher is also responsible for stag-
ing any required files to and from the resource. The
Launcher will also monitor the running job and pass
back any information about the success or failure of
the job.

4.2 JDML

JDML is a general job description language de-
signed for deploying jobs onto DRMs. Further in-
formation can be found in [1]. The work per-
formed in developing the JDML is now feeding
into the GGF [3] standardization process through
the Job Submission Description Language working
group [5].

Components in ICENI applications are deployed
within the ICENI Grid Container. Thus the JDML
documents describe how to start up the Grid Con-
tainer and obtain the EP for the application.

4.3 Launchers

On receiving a JDML document the Launching
Framework will pass this document down to the at-
tached Launcher which translates the JDML into
a format the local resource or DRM can handle.
The Launcher is also responsible for staging any re-
quired files to and from the resource. The Launcher
will also monitor the running job and pass back any
information about the success or failure of the job.

4.4 Advanced Reservation Launchers

Some DRM systems support advanced reservation
which can be exposed through the ICENI Launcher.
In this case when the scheduler determines that a re-
source will be required for a certain interval of time
a reservation is made with the Launcher through a
WS-Agreement procedure based on the current WS-
Agreement document [8]. If an agreement to reserve
the resource is reached then the components to be

Proceedings of the UK e-Science All Hands Meeting 2004, © EPSRC Sept 2004, ISBN 1-904425-21-6

898



deployed to that resource are placed into the “Green
Room” until the resource reservation time is met.
The scheduler is then responsible for submitting the
JDML to the Launcher during the interval of the
reservation.

4.5 The Grid Container

The grid container is the last stage of the work-
flow pipeline. The concrete components that are to
be deployed onto the resource where the grid con-
tainer has been initialized are now instantiated. The
grid container is then responsible for the choreog-
raphy of the overall workflow. It deals with pass-
ing data between the components within the appli-
cations and the firing of event notifications that can
be used by the performance repository for collect-
ing performance results in order to provide better
predictions for future workflow predictions.

In most situations the components within a
workflow will not all be deployed onto the same
resource. As such there will be grid container run-
ning on each resource used in the workflow. These
grid containers need to discover each other in or-
der to allow the components to communicate. This
is achieved through the underlying ICENI commu-
nication layer.

In order to monitor the execution of components
ICENI uses an event model. ICENI events are fired
whenever a component is entered or exited, these
events are picked up by a running ICENI perfor-
mance repository which can use the information
in order to collect performance information to be
added to the repository to improve future predic-
tions. Events are also used to monitor the comple-
tion (or failure) of components.

5 Conclusion

We have shown in this paper how the components,
within a workflow, are deployed within the ICENI
environment. The deployment of these components
can be performed in an efficient manner. although
we seek to improve this process through further re-
search, both in the choice of optimization policy and
the use of scheduling algorithm to obtain the “best”
schedule in a shorter period of time. Or at least a
reasonable schedule in a reasonable time.

ICENI contains a complete workflow enactment
process, capable of taking a users abstract work-
flow design and deploying this across a grid. Fur-
ther techniques are being considered to allow users
to define their problem space in a more abstract and
general manner.

In the current implementation, users need to
have their own launchers running in order to make

reservations for their exclusive use. This is because
the launcher makes reservations on the underlying
Sun Grid Engine for the user running the launcher.
This means that whoever has access to the launcher
will be able to submit jobs to the launcher and have
them run.

Since expecting all users requiring reservations
to start up their own launchers, and thus have a lo-
cal SGE account on the resource that they wish to
run their jobs on, is not a scalable solution, it has
been proposed that another layer of reservations ad-
ministration be added, this time within the launcher
itself.

In this architecture, the launcher keeps track of
what reservations have been made, and are active,
and hence whether a user’s job should be submitted
to the base level reservation or not. Hence, although
the base level reservation allows any user to submit
jobs via the launcher, the additional layer of admin-
istration in the launcher will police the submission
to jobs.

An active area of research within LeSC is the
performance overheads incurred by the ICENI sys-
tem. Although these values are typically small, less
than 10% of the overall execution time [6], we are
striving to reduce this value. We are experiment-
ing with techniques of caching and multi-threading
schedulers.

References

1. A common job description markup language written
in xml. http://www.lesc.doc.ic.ac.uk/
projects/jdml.pdf .

2. e-Science Workflow Services Workshop.
http://www.nesc.ac.uk/action/esi/
contribution.cfm?Title=303 , December
2003.

3. Global Grid Forum.http://www.ggf.org .
4. N. Furmento, W. Lee, A. Mayer, S. Newhouse, and

J. Darlington. ICENI: An Open Grid Service Architec-
ture Implemented with Jini. InSuperComputing 2002,
Baltimore, USA, November 2002.

5. Job Submission Description Language Working
Group. https://forge.gridforum.org/
projects/jsdl-wg .

6. M. Y. Gulamali, A. S. MCGough, R. J. Marsh, N. R.
Edwards, P. J. Valdes, S. J. Cox, S. J. Newhouse, and
J. Darlington. Performance guided scheduling in GE-
NIE through ICENI. InTo apper at the UK All Hands
Meeting 2004, Nottingham, September 2004.

7. A. Mayer, S. McGough, M. Gulamali, L. Young,
J. Stanton, S. Newhouse, and J. Darlington. Mean-
ing and Behaviour in Grid Oriented Components. In
3rd International Workshop on Grid Computing, Grid
2002, volume 2536 ofLecture Notes in Computer Sci-
ence, Baltimore, USA, November 2002.

Proceedings of the UK e-Science All Hands Meeting 2004, © EPSRC Sept 2004, ISBN 1-904425-21-6

899

http://www.lesc.doc.ic.ac.uk/
http://www.nesc.ac.uk/action/esi/
http://www.ggf.org
https://forge.gridforum.org/


8. Grid Resource Allocation Agreement Proto-
col. https://forge.gridforum.org/
projects/graap-wg .

9. Laurie Young. Scheduling componentised applica-
tions on a computational grid. MPhil Transfer Report,
2004.

Proceedings of the UK e-Science All Hands Meeting 2004, © EPSRC Sept 2004, ISBN 1-904425-21-6

900

https://forge.gridforum.org/

