
Performance Architecture within ICENI

Stephen McGough, Laurie Young, Ali Afzal, Steven Newhouse and John Darlington

London e-Science Centre, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
Email: lesc-staff@doc.ic.ac.uk

Abstract. This paper describes the architecture built into the Imperial College e-Science Infrastruc-
ture (ICENI) for handling performance meta-data. The architecture provides a means to gathering per-
formance information, processing this information to populate the performance store, and to use this
performance information to aid in the selection of resources and component implementations. The Per-
formance Framework is developed in a “pluggable” manner allowing alternate implementations of the
three main features to be used. Performance Stores may be either data stores or based on analytical
models.

1 Introduction

Grids, federations of distributed computing, storage
and software resources owned by different organi-
sations, are beginning to emerge in industry, com-
merce, research and academia. Expectations within
these communities as to the quality and behaviour
of the Grid are very diverse: some users expect re-
sources to be provided for free with ‘best effort’
quality of service while others are happy to pay per
use but expect defined service level agreements in
return. Delivering such discriminating levels of ser-
vice, possibly in return for payment, involves the
integration of the Grid’s underlying fabric (the re-
sources), with the middleware that exposes this ca-
pability and with a user environment that is able
to expresses these requirements. Our focus in this
paper is to show how bringing together elements
from the fabric (reservations) and middleware ser-
vices (performance & scheduling), with the user
and their applications (workflow, application perfor-
mance models & execution constraints) will allow
us to build a Grid infrastructure that will deliver a
predictable user experience.

An integrated approach to building Grid mid-
dleware has been a central philosophy within the
ICENI (Imperial College e-Science Networked In-
frastructure) activities at the London e-Science Cen-
tre [5]. We have been using ICENI to prototype a
Grid infrastructure that will provide a predictable
user experience through the co-ordinated use of (ini-
tially): reservation enabled compute resources; an
ability to capture and record performance informa-
tion obtained during application execution; the abil-
ity to define the workflow and provide performance
annotations when constructing an application from
components and a scheduling system capable of
exploiting this collected meta-data to optimise the
placement of the application to reduce overall exe-

cution time. This enables us to ensure that appropri-
ate reservations are obtained on the relevant com-
pute resources and to ensure a predictable execution
time.

ICENI is a component based end-to-end Grid in-
frastructure that provides a mechanism for defining
workflows in terms of components. These compo-
nents are scheduled, through the ICENI scheduling
system which determines the “best” mapping of im-
plementations of each component onto a subset of
available resources through the goals of the vari-
ous stakeholders i.e. users, resource providers and
managers of the virtual organisation. In order to ef-
ficiently map components onto resources it is neces-
sary to have some knowledge of the execution time
for each component.

We have developed a performance repository
system within ICENI which is capable of monitor-
ing running applications to obtain performance data
for the components within the application. This data
is stored within the performance repository with
meta-data about the resource the component was
executed upon, the implementation of the compo-
nent used and the number of other components con-
currently running on the same resource. There is
also provision for the component implementation
designer to define other meta-data that should be
stored. This could include such things as the prob-
lem characteristics which will affect the execution
time.

In future runs of applications through the ICENI
system the performance data stored can be used by
the scheduler to estimate the execution times for
each component within the workflow and hence the
overall execution time of the application. As the
meta-data stored about each component’s execution
time includes data about the number of components
concurrently running on a resource it is possible for
the scheduler to compute the execution time for the

Proceedings of the UK e-Science All Hands Meeting 2004, © EPSRC Sept 2004, ISBN 1-904425-21-6

906



Performance
StorePerformance

Store

Scheduler

Performance
Store

Reservation
Service

Launcher
Launcher

Launcher
Launcher

Launcher
Launcher

Reservation
Engine

Application
ServiceApplication

Service

Fig. 1: The Trinity architecture: Scheduling, Reservation and Performance Prediction

whole application given that components can be co-
allocated to a resource.

2 Implementation Architecture

We beleave that there is a trinity between the
scheduling of applications, the ability to reserve re-
sources and the ability to accurately predict the per-
formance of the components constituting the appli-
cation. Without performance modelling one cannot
extract a critical path, nor produce accurate reserva-
tions, and without reservations one cannot control
the predictability of execution times. In the rest of
the paper we outline an architecture for using this
trinity to efficiently deploy applications over a Grid.
We further show how this architecture has been in-
tegrated into the ICENI[5] Grid middleware.

The basic architecture is illustrated in Figure 1.
A Scheduler may interact with multiple Launch-
ers where each Launcher represents one or more
resources. Each Launcher may be associated with
one Reservation Engine, if reservations are possi-
ble. The Scheduler interacts with the Reservation
Service which in turn communicates with the Reser-
vation Engines through the Launchers. There may
be multiple Performance Stores each of which can
be interrogated by the Scheduler. Once a workflow
is instantiated it will have an Application Service
which exists until the workflow terminates.

In this architecture the Scheduler acts as the con-
trolling entity with workflows being submitted to it.
Once the Scheduler has received the workflow it can
determine the critical path by determining the exe-
cution times of the component activities through re-
quests to the Performance Stores. The scheduler can
then produce (potentially more than one) concrete
workflow using a subset of the resources available
within the Grid. These concrete workflows can be
passed to the Reservation Service to generate reser-
vations. The Reservation Service will talk to all rele-
vant Launchers and make requests to their Reserva-
tion Engines if available. The Scheduler will com-

municate with each Launcher involved in the se-
lected concrete workflow to initiate the appropriate
parts of the workflow. If components in the work-
flow are to be enacted at a later point due to a reser-
vation they are held in the Application Service until
they are due to be launched.

3 Scheduling Applications using
Workflow and Performance data

Various scheduling algorithms can be used within
ICENI by using the ‘pluggable’ Scheduling Frame-
work. Many schedulers have been written for the
ICENI framework, some of which are capable of
scheduling workflows in terms of the execution
times of the components. The scheduler can com-
municate with the Performance Repository through
the Scheduling Framework. The scheduler requests
execution times given implementations, resources
and co-allocation counts along with other meta-data
defined by the component implementation designer.
This information can be combined into the work-
flow to enable the scheduler to determine the overall
execution time for the application and determining
the critical path. The predicted execution times of
each component in an application allows advanced
reservations to be made for that execution, when this
is allowed by the low level execution environment.
Delayed enactment of components can also be per-
formed.

Each Grid application is described as an abstract
workflow, a description of activities to be carried
out and the dependencies between them. The task
of a Scheduler is to allocate each task to a Grid en-
abled resource, thus creating a concrete workflow. A
number of algorithms are available to perform this
task, such assimulated annealing, complete infor-
mation game theory, best of N randomandexhaus-
tive search[13]. Each of these algorithms at some
point has to evaluate and contrast potential sched-
ules. When optimising for time (as in most cases)

Proceedings of the UK e-Science All Hands Meeting 2004, © EPSRC Sept 2004, ISBN 1-904425-21-6

907



Start Activity Split

Send

Send

Receive

Receive Activity

Activity Stop

Send Receive Activity Stop

t=0 time

Fig. 2: Scheduling Applications based on start time

Start Activity Split

Send

Send

Receive

Receive Activity

Activity Stop

Send Receive Activity Stop

t=0 time

Fig. 3: Scheduling applications based on finish time

this is done by computing the expected execution
time.

In order to compute the expected execution time
the critical path though the application is computed.
This involves computing the start and end time of
each activity. This information is stored and later
passed on to the reservation service. A number of
the activities will have no dependencies on any task
and are thus considered to be ‘starting’ activities,
which are assumed to start at timet = 0 without
loss of generality. A predicted duration is then ob-
tained by querying the Performance Repository, tak-
ing into account the number of activities the sched-
uler has placed on the same resource, the resource
specification, the implementation selected and other
meta–data defined by the component implementa-
tion designer. The expected end time of the activity
is used as the start time of the next dependent ac-
tivity. This is repeated until all activities have been
processed (see fig 2). This gives the earliest time
an activity can start. The latest end time is then the
duration of the application. The scheduler can then
select concrete workflows with the shortest applica-
tion duration.

Activities which do not lie on the critical path
have much more freedom in terms of when they ex-
ecute. This results in more freedom for the reser-
vation engine in making reservations. This is calcu-
lated by using the same procedure as above, except:
all ‘stop’ activities (those with no activities depen-
dent on them) are considered to occur simultane-
ously at the end of the application; and the analysis
is done backwards (see fig 3). This gives the latest
time an activity can start without increasing the to-
tal application duration. If the start and end times for
an activity match when computed in both directions
then the activity lies on the critical path.

4 Gathering and Using Performance
Data

Fig. 4: The Performance Repository Framework

The Performance Repository has been designed
with the capability to monitor running applica-
tions, to obtain performance data for the compo-
nents within the application and to store new data
when available. This is provided through the ‘plug-
gable’ Performance Repository Framework (Figure
4). The data is stored within the Performance Store
with meta–data about the resource the component
was executed upon, the implementation of the com-
ponent used and the number of other components
concurrently running on the same resource. There
is also provision for the component implementation
designer to define other meta-data that should be
stored. This could include such things as the prob-
lem characteristics which will affect the execution
time. For example in the case of a component which
solves a set of linear equations the component de-
veloper can indicate that the number of unknowns
will have an effect on the performance of the com-
ponent. This can be added to the meta-data about the
component. When the application is run the number
of unknowns will be recorded and when the Perfor-

Proceedings of the UK e-Science All Hands Meeting 2004, © EPSRC Sept 2004, ISBN 1-904425-21-6

908



mance Repository is queried if a value for the un-
knowns is given then the returned value will be de-
rived using this value.

When requesting data from the Performance
Repository all attached performance stores will be
asked for their data. This data is taged with meta-
data indicating the confidence the store has on the
provided data. This is used to provide weightings
on the data as it is combined. When obtaining val-
ues from the Performance Repository the client may
specify a valuex indicating the proportion of “ex-
tra” time that should be added to the return value.
Values are generated as the mean of the recorded
values. Thus the return value generated from the
store from a set of records with meand and stan-
dard deviationσ the return value is computed as

d + xσ.

4.1 Collection of Performance Results

Each component within ICENI’s extended compo-
nent programming model may have multiple in-
put/output ports which will lead to an activity being
performed either between the component starting up
and some port firing, or between ports firing on the
same component. This implies that each component
may have multiple activities. These activities can-
not be transparently observed by the ICENI system.
However, the port firing (and component start, end)
times are recorded by ICENI allowing the activity
times to be recovered along with any data and meta-
data provided by the component implementation de-
signer.

Each time a component starts up or a component
port fires an ICENI event message is triggered. The
performance repository listens for these events and
records them for each running application. Once the
application has finished executing the raw timings
and meta-data provided by the component imple-
mentation designer are processed to compute the ac-
tivity times and stored permanently within the per-
formance repository.

4.2 Storing Performance Data

The Performance Repository allows multiple stor-
age implementations to be used through a stan-
dard interface. It is assumed that all performance
stores will provide persistent data storage. Mul-
tiple performance stores can be provided from a
single Performance Repository and multiple Per-
formance Repositories may exist within the same
ICENI space. If multiple stores are available re-
sults will be aggregated between the stores based
on some notion of the quality of the data provided

by the store. As the performance store provides in-
formation given some specification of implementa-
tion and resource (amongst other data) it is possible
to provide an analytical model which provides in-
formation in place of a store. If multiple stores are
attached to a performance repository each store has
the ability to add new activity information once it is
collected.

Currently ICENI contains performance stores
for a serialised object store and analytical models
for a range of simple components. A database store
is currently under development.

In general the store will not be capable of pro-
viding predicted execution times for all possible
combinations of resource, component and problem
specific descriptions. The performance repository is
capable of using regression techniques to provide
estimates in cases where previous data fails to pro-
vide an estimate. This is currently an ongoing re-
search topic within the group.

5 Making Advanced Reservations

The Reservations Service attempts to co-allocate all
the resources required for the execution of the work-
flow. It does so by entering into negotiation with the
appropriate resource manager, abstracted through
the Reservations Engine, running on each resource
in order to make advanced reservations for the time
and duration specified in the concrete workflow. The
negotiation is bound by the constraints defined by
the earliest and latest start times for an activity as
calculated by the scheduler. The negotiation proto-
col is based on WS-Agreement[9].

Advanced reservations can, obviously, only be
created if they are supported by the underlying re-
source manager, otherwise the scheduler has to re-
sort to a best-effort service with regards to any un-
reservable resources. If the negotiation fails, i.e. the
resource cannot create a reservation satisfying all of
the application’s constraints, then the reservations
service can consider alternative schedules.

The Reservation Engine exposes the advanced
reservation capability, if it exists, in the underly-
ing resource management system. We are using Sun
Grid Engine to support our advanced reservation
work. Until advanced reservation support is avail-
able we are modifying the access control lists for
the required resources to only allow a specific job
from a specific user to gain access to the resource at
the specified reservation time.

With this interim solution, reservation requests
that have been accepted are added into a queue and
activated at their designated start times. Any jobs
still running on the resource are terminated and the
access control lists associated with the resource are

Proceedings of the UK e-Science All Hands Meeting 2004, © EPSRC Sept 2004, ISBN 1-904425-21-6

909



modified to allow access only to the user who has re-
quested the reservation. Henceforth, only that user
can now submit jobs to the resource. When the
reservation end time is reached, the access control
lists are restored to their default configuration. Any
jobs still running on the resource, at the expiry of
the reservation will either be allowed to continue or
terminated based on the local resource policy.

The Reservations Engine handles all incoming
requests for reservations. These requests are vali-
dated in terms of the user access permissions and the
availability of the named resource. Once the request
is validated, the Reservation Engine checks for con-
flicts with existing reservations. A conflict occurs
when the time frame for which a reservation is re-
quested overlaps that of another reservation already
created on the same resource. If the reservation re-
quest is valid and there are no conflicts, the Reser-
vation Engine creates a reservation on the resource.
If a conflict is detected, the reservation request is
rejected and the client is notified. The Reservations
Engine can also potentially return a list of alterna-
tive reservations: reservations on the same resource,
for the same duration of time, but beginning at a
different time. The client can then choose to create
a reservation from the list of alternatives presented
to it or abandon the negotiation process.

6 Related Work

Scheduling with Advanced Reservations has been
the subject of few studies. Even fewer investigate
the performance issues surrounding advance reser-
vations. Nevertheless, in this section we attempt to
draw parallels and identify the differences between
our approach and existing work.

Advance reservations schedulers tend to use the
maximum predicted execution time or, at best, a
conservative estimate of the execution time of a
workflow, or activity within a workflow, when cre-
ating reservations on a resource [10, 6, 12]. Our ap-
proach uses the mean predicted execution time of
a component plus a multiple of the standard devia-
tion. The problem with the former approach is that
there may be quite a significant difference between
the mean and maximum predicted execution times,
especially in the case where the performance pre-
dictions were obtained using theoretical techniques,
e.g. structural analysis of programs. In this case, us-
ing maximum predicted execution times could un-
necessarily delay other applications, even though
the running application may finish execution well
before the expiry of it’s reservation.

Using the latter model, predicted execution
times take into account a big percentage of previ-
ous runs of the activity, disregarding spurious and

widely varying results. This results in a more ac-
curate prediction, with a very high probability that
the activity will finish execution within the reser-
vation time. Thus, for a minimal loss in reliability
as compared to the case where maximum predicted
run-times are used, we have eliminated the problem
where reservations for other applications/activities
on the same resource could be unnecessarily de-
layed. Since reservations are now being requested
for a shorter time as compared to the maximum pre-
dicted run-time, the likelihood that a reservation re-
quest will be rejected is reduced (see [8]). Thus,
we have also reduced the mean difference between
requested reservation times and actual reservation
times.

Our performance model for workflows using
reservations assumes that batch jobs and jobs wait-
ing in the queue have lower priority than reserved
jobs. Our main concern is reliable and efficient ex-
ecution of a workflow by reservation of resources.
Jobs submitted outside of reservations are only exe-
cuted when the resource is not reserved and execut-
ing the job would not effect any reservation in any
way, i.e. Backfilling. Hence, the performance results
with regards to mean wait-times and mean differ-
ence between requested and actual reservation times
as documented in [10] do not apply in our case.

The GRADS project [11, 7] uses the approach
of fine grain monitoring of applications which they
have found to affect the performance of the applica-
tion. Or approach is much more course-grained thus
not suffering from this problem.

Our model for the reliable execution of work-
flows holds regardless of scheduling algorithm and
backfilling. Analysis of the case where the reserved
jobs have lesser priority than jobs in the queue is the
subject of further work.

Foster [4] proposed a technique for making ad-
vanced reservations in GARA. This work has been
supplanted by the WS-Agreement which we use in
this work. Our work matches the architectural de-
sign currently being discussed through the Open
Grid Services Architecture (OGSA) [2] Execution
Management Service (EMS) subgroup within the
Global Grid Forum (GGF) [3]. The trinity we have
identified should also be present in any EMS en-
abled system. Our work also fits within the scope of
the work undertaken within the EU-funded APART
project [1].

7 Conclusion

In this paper we have described the performance
architecture placed within ICENI to provide what
we have termed the “trinity” of scheduling services;

Proceedings of the UK e-Science All Hands Meeting 2004, © EPSRC Sept 2004, ISBN 1-904425-21-6

910



scheduling, reservation and performance services.
This allows ICENI to provide much better predic-
tions on the overall execution times of applica-
tions composed of individual and interacting com-
ponents. To provide such control a system requires a
performance modelling mechanism that allows both
application structure and empirical performance re-
sults to be recorded, stored, retrieved and analysed.
The application structure is necessary for the reser-
vation mechanism, the empirical data is needed to
reduce performance overheads. Increasing numbers
of resource management systems can support ad-
vanced reservations, and together with schedulers to
exploit them we have a trinity of performance analy-
sis, reservation mechanism, and scheduling systems
that can provide the required predictability. This ca-
pability has been fully integrated into the ICENI
grid middleware system.

ICENI is distributed under a SISSL-like open
source license, and has a flexible and extensible ar-
chitecture that allows new services and new imple-
mentations (at each stage of the performance driven
scheduling process) to be plugged in. This allows
ICENI to be used as a framework to explore these
performance scheduling issues with a Grid support
e-science applications.

References

1. APART: Automatic Performance Analysis: Real
Tools. http://www.fz-juelich.de/
apart/ .

2. Open Grid Services Architecture. https:
//forge.gridforum.org/projects/
ogsa-wg .

3. Global Grid Forum.http://www.ggf.org .
4. I. Foster, C. Kesselman, C. Lee, R. Lindell,

K. Nahrstedt, and A. Roy. A distributed re-
source management architecture that supports ad-
vance reservations and co-allocation. InProceedings
of the International Workshop on Quality of Service,
1999.

5. N. Furmento, W. Lee, A. Mayer, S. Newhouse, and
J. Darlington. ICENI: An Open Grid Service Archi-
tecture Implemented with Jini. InSuperComputing
2002, Baltimore, USA, November 2002.

6. Maui Scheduler. http://www.supercluster.org/maui.
7. C. Mendes and D. Reed. Monitoring large systems

via statistical sampling, 2002.
8. Rui Min and Muthucumara Maheswaran.Scheduling

Co-Reservations with Priorities in Grid Computing
Systems, pages 266–268. 2002.

9. Grid Resource Allocation Agreement Proto-
col. https://forge.gridforum.org/
projects/graap-wg .

10. Warren Smith, Ian Foster, and Valerie Taylor.
Scheduling with Advanced Reservations, pages 127–
132. 2000.

11. Fredrik Vraalsen, Ruth A. Aydt, Celso L. Mendes,
and Daniel A. Reed. Performance contracts: Pre-
dicting and monitoring grid application behavior. In
GRID, pages 154–165, 2001.

12. Lingyun Yang, Jennifer M. Schopf, and Ian Foster.
Conservative scheduling: Using predicted variance
to improve scheduling decisions in dynamic envi-
ronments. InProceedings of SuperComputing 2003,
pages 1–16, 2003.

13. L. Young, S. McGough, S. Newhouse, and J. Darling-
ton. Scheduling Architecture and Algorithms within
ICENI. In UK e-Science All Hands Meeting, August
2003.

Proceedings of the UK e-Science All Hands Meeting 2004, © EPSRC Sept 2004, ISBN 1-904425-21-6

911

http://www.fz-juelich.de/
http://www.ggf.org
http://www.supercluster.org/maui
https://forge.gridforum.org/

