
A Standards Based Approach to Job Submission Through Web
Services

William Lee, Stephen McGough, Steven Newhouse, John Darlington

London e-Science Centre, 180 Queens Gate, Department of Computing,
Imperial College London, London, SW7 2BZ, UK
{wwhl,asm100,sjn5,jd }@doc.ic.ac.uk

Abstract. The ability to submit jobs to foreign computational resources is a core requirement in Grid
Computing. There are many Distributed Resources Managers (DRM) in existence for deploying jobs to
Grid Resources. However, they require jobs to be described in propreitary language. The submission in-
terfaces are often restricted solely for human interaction or consumable only through language-specific
APIs. In this paper, we demonstrate the use of the widely accepted and standardised Web Service spec-
ifications and related technologies to build a Job Submission Web Service (WS-JDML). Leveraging the
Job Description Markup Language (JDML), it provides a DRM-neutral input to the submission ser-
vice, where transformation can take place in order to hide the underlying DRMs. The input and output
sandbox abstraction in JDML also allows data transfer mechanism to be described in a generic manner.

1 Introduction

A Service-oriented Grid Architecture promotes
composition of generic services as a way to realise
higher-level task. Job submission service is one of
the most important building block to allow compu-
tational task to be deployed on foreign Grid resource
transparently. The service should also encapsulate
state monitoring and output transfer.

There are many Distributed Resource Manage-
ment (DRM) systems available supporting some of
these requirements, namely Condor[9], Sun Grid
Engine[1] and LSF[8]. However, there are no stan-
dardised interface for these heterogeneous systems.
They differ not only on their functionalities, but
most of which have their own job descriptions. Ac-
cess to these systems can be characterised by the
description language and the interaction interface.
Most systems provide a combination of command-
line tools, socket-based interface, API with dif-
ferent language-bindings (e.g. DRMAA[5], Java
CogKit[13]), and recently HTTPS web access and
the latest adoption of Web Service. The heterogene-
ity hinders the development of interoperable Grid-
wide job submission and induces lock-in to a spe-
cific vendor.

The growing set of maturing Web Service spec-
ifications have encouraged the Grid community to
consider open standards as a substrate in build-
ing service-oriented architecture. Efforts in review-
ing the usability of Open Grid Services Infrastruc-
ture[3], and the latest development in WS-Resource
Framework[4] and the Grid Application Framework
(WS-GAF) have demonstrated the need to closely
adhere to already established standards and imple-

mentations in order to promote interoperability as
well as achieving the network effects. The adoption
of any of these frameworks are largely orthogonal
to job submission. However, the need to build on
the foundation of Web Service is apparent from the
commonalities. Related to our work, recent devel-
opment in the Globus GRAM service[12] tackles
the interoperability problem by adopting the Open
Grid Services Infrastructure as the interface layer
and the XML schematised RSL language as the job
submission language.

Our proposal seeks to provide an alternative that
employs Web Service standards that are supported
by a wide variety of vendor toolings. It demonstrates
the design of the Job Submission Web Service in-
terface that utilises a generic language as job de-
scription. We show how this interface can be im-
plemented using the J2EE enterprise platform for
the added benefits of scalability and fault-tolerance.
Through the use of pluggable transformation and
connectors, the system allows jobs to be submitted
to any resource made available on the grid irrespec-
tive of the underlying architecture or DRM systems.

2 WS-JDML Web Service Interfaces

The WS-JDML web service comprises of two re-
lated port types decoupling the submission and
monitoring capabilities. The semantics of the ser-
vice centered around the Job Description Markup
Language (JDML) that describes job with terms,
such as the executable, arguments, input, output and
an extensible set of terms describing operational re-
quirements of the job. This section will first discuss

Proceedings of the UK e-Science All Hands Meeting 2004, © EPSRC Sept 2004, ISBN 1-904425-21-6

901



JDML as a stand-alone language to describe aspects
of a job, then inspect the web services port types that
acts on JDML document.

2.1 Job Description Markup Language

JDML is a common job description language origi-
nally developed for use within the European Union
Datagrid[11] based around Condor (ClassAds)[10]
, which was used in the project. JDML has subse-
quently been adopted as the main deployment lan-
guage used within the Imperial College eScience
Networked Infrastructure (ICENI)[7] for deploying
work onto a wide range of architectures. JDML
is now being used as one of the Job Descrip-
tion Languages feeding into the Global Grid Fo-
rum (GGF) Job Submission Description Language
Working Group (JSDL-WG)[6]. The role of the
JSDL-WG is to define a common Job submission
language that can be used to describe jobs that can
be launched. The work that comes out of the JSDL-
WG will feed back into JDML.

JDML documents are structured into sections.
The primary sections are those describing the job to
execute, the environment to use, how to obtain the
files required for the job and where to send the re-
sult files. The document may be extended with addi-
tional sections that contain information that is only
relevent for particular DRMs. To allow jobs to be
executed anywhere this extra DRM information can
be safely ignored and the job will still run success-
fully.

The JDML document consists of strongly typed
named atrribute value pairs. This allows tighter con-
trol on JDML documents and more inline checking
of the contents, but also enables the value of the at-
tibutes to be constrained (through inequalities and
logical conditions) and represented within the doc-
ument as an XML fragment. The language also sup-
ports a number of functions for such things as de-
termining the current date and time, string manipu-
lation and general comparison operations.

The files section of a JDML document describes
how to obtain those files required for the executon of
the job and what to do with the generated files. Each
file is defined along with one or more file trans-
fer descriptions. These define how to transfer the
file by such techniques as Grid FTP, HTTP trans-
fer or transfer over a shared file space. If more than
one transfer description exists the DRM can choose
which one to use. The input and output sandbox de-
fines a virual file systems that exists during the life-
time of the job irrespective of the underlying archi-
tecture and absolute file locations.

2.2 Job Submission Port Type

The role of the submission port type is to abstract
the submission action using a JDML document as
the input. The JDML document details the parame-
ters and operational requirements of a job. The port
type responds to a submission request in several
ways.

Unrecognised Job Term- Since the JDML doc-
ument allows extensible set of terms to be
attributed for future expandability and DRM-
specific actions, the submission port raises a
fault if some terms are not recognised as a de-
fensive interpretation.

Invalid Job Term - A fault is raised if the input
JDML contains term value that is typed incor-
rectly, or the value is unrecognised. This caters
for some job terms, such as file sandbox con-
taining unsupported transfer mechanisms.

Successful Submission- Upon submission of a
JDML that is attainable, the job is scheduled
or run asynchrously to the response. The sub-
mission port responds with a URI that uniquely
identifies the job that can be passed to the the
monitoring port to retrieve job status and out-
put.

The use of an URI as a reference to the job in-
stance allows the submission and monitoring ports
to be decoupled functionally and physically. The
monitoring service can reside on distributed re-
sources or be indirectly addressed through interme-
diate gateways, firewalls, etc.. in a transport-neutral
manner. By standardising on the URI scheme in use,
client can be adapted to resolve the physical desti-
nation of the monitoring port. Although this meta-
data is opaque to the client (e.g. mapping of unique
ID to DRM specific ID), it can be used by multiple
co-operative monitoring services to achieve load-
balancing and fault-tolerance.

2.3 Job Monitoring Port Type

The monitoring port type abstracts the process of
retrieving job status and managing output transfer.
Client interacts with the job monitoring port with
status request message augmented with job identi-
fier URI.

The current design mandates a set of well-
known Uniform Resource Identifiers (URI) to de-
fine a common set of job states, namelypending,
scheduled, running, suspended, doneandexit. The
set of states might not be supported by all job sub-
mission service, for example, DRM that doesn’t
support checkpointing might not provide thesus-
pendedstate. Moreover, ways of advertising the

Proceedings of the UK e-Science All Hands Meeting 2004, © EPSRC Sept 2004, ISBN 1-904425-21-6

902



supported state transition is not defined in the cur-
rent design. The meaning of the job state supported
by different job submission service is essential to
enable autonomous monitoring in the future.

Apart from inspecting job status, clients can use
the monitoring port to initiate output transfer from
the output sandbox. Client can request portion of the
files to be transfered using the mechanism already
defined in the JDML document, or be overridden
with alternative method and address. This allows the
output to be underspecified at submission time and
modified at runtime. Apart from the transfer mech-
anism defined in JDML, the monitoring port type
allows data transfer using SOAP attachment.

3 A Generic WS-JDML Web Service

The WS-JDML web service port types have been
prototyped as part of the ICENI project to demon-
strate the functionalities on top of existing DRMs.
The implementation is built on the Java J2EE 1.4
platform showcasing many capabilities. By archi-
tecting on the J2EE standard APIs and deployment
model, the system is widely deployable on J2EE
platforms provided by different vendors allowing
deployers to have a wider choice on the perfor-
mance guarantee and the cost. The current proto-
type implements the WS-JDML web service inter-
face and a generic backend layer that can commu-
nicate with a variety of DRM systems, namely se-
cured shell execution and condor at the time of writ-
ing. Figure 1 depicts the current architecture.

In the web service layer, the JAX-RPC com-
pliant Java implementation of the submission and
monitoring port types are responsible to verify the
JDML input against the schemas and supported set
of job terms. They are also responsible to authorise
requests based on the WS-Security[2] artifacts car-
ried in the SOAP headers. When a new job arrives,
the job request is persisted to acknowledge receipt
and pass on to the next stage in the pipeline.

At the core of the implementation, the Java Mes-
sage Queue (JMS) is responsible for persisting the
input jobs in a FIFO fashion. The queue is transac-
tionally managed by the container, therefore subse-
quent failure in the pipeline would ensure changes
in the job state be rollbacked and replayed at the
next opportunity. The JobBean serves as the long-
term representation of the job state and other infor-
mation conveyed back to the client during the life-
time of the job.

The JobConsumerBean removes a job request
from the queue and initiates the job submission pro-
cess. The current implementation relies on the ab-
straction of aJDMLTransformerandDRMConnec-
tor pair for each underlying DRM. The JDMLTrans-

former implementation is responsible for transform-
ing a JDML document into the native format of
the DRM and a set ofActions to be performed by
the DRMConnector. The set of actions include file
transfer and initialisation of the environments. The
DRMConnectorobtains the actions and the native
script from the transformation pipeline, and con-
nects to the DRM system using platform-specific
means, such as secured shell, Java API, etc.. De-
pending on the monitoring facilities provided by the
underlying DRM systems, job state update is cur-
rently obtained by pulling the DRM using aTimer-
Beanperiodically.

In order to handle the input and output sand-
boxes, the current implementation allows file to be
transmitted using SOAP attachments, and other tra-
ditional means of file transfers, such as grid-ftp,
sftp, etc.. depending on the set of configured file
transfer components available as extensibleActions.

4 Discussion

The WS-JDML port types defined have several open
areas to be examined;

– Job State Transition- The ability to describe the
job state transition supported by a job submis-
sion service is essential for autonomous moni-
toring agents to act on the reported state of the
job.

– Notification - The current interface only sup-
ports a pull-approach in retrieving job status.
A more scalable approach would be to notify a
nominated sink service to receive state change
event. Upcoming Web Service specifications,
such as WS-Notification might be able to ad-
dress this in a standardised manner.

– Job Term Semantics- Definition of job term
is documented using natural language specifi-
cation. The lack of formal model to describe
job term semantic makes transformation error-
prone and open to ambiguity. By annotating job
term definition with ontological metadata in dif-
ferent job description language, one can con-
fidently reason and transform between job de-
scription.

The implementation is an on-going project seek-
ing to provide more comprehensive support to dif-
ferent DRMs and file transfer protocols. The scal-
ability of the system can be characterised by the
J2EE containers in use. Distributed Java Message
Queue implementation is common-place, therefore
the job consumer layer can be vertically distributed
and horizontally scaled. Fault-tolerance is ensured
by the transactional capability of the container and

Proceedings of the UK e-Science All Hands Meeting 2004, © EPSRC Sept 2004, ISBN 1-904425-21-6

903



J2EE Container

MonitoringPortType SubmissionPortType

DB

JAX-RPC

MonitoringPortTypeImpl
JAX-RPC

SubmissionPortTypeImpl

Job Queue
(JMS)

Entity EJB

JobBean
Entity EJB

JobBeanEntity EJB

JobBeanEntity EJB

JobBean

JobConsumerBean

Message-driven Bean

JDMLTransformer

DRMConnector

Sun Grid Engine Globus GRAM etc.

ssh - command-line Java CogKit (RSL)

Fig. 1: A Generic WS-JDML Web Service in J2EE

the long-term persistence of states in database. Al-
though once the job entered into the DRM layer, the
treatment of job failure depends on the recovery fa-
cility provided by underlying DRM.

The implementation has employed WS-Security
to secure message exchange between the client
and the service. However, the translation of X509
credential carried in the WS-Security layer to the
DRM-specific credential is a subject for future
work. A possible direction would be to adopt a cre-
dential delegation scheme where the WS-JDML ser-
vice acts as a gateway to submit job to backend
DRM on behalf of the client. However at the time
of writing there is no existing standard in the con-
text of WS-Security to enable secured delegation of
identity.

5 Conclusion

This paper has discussed an experimental specifi-
cation of a Job Submission and Monitoring Web
Service. The port type definition utilises exist-

ing Web Service standards to achieve transport-
neutral addressing and message-level security. The
experimental definition is accompanied by an ex-
ploratory implementation building on industry-
supported Web Service tools and platforms. The
generic implementation can be extended to support
a rich set of DRMs and data transfer mechanisms.

References

1. Project SGE. http://wwws.sun.com/
software/gridware/ .

2. Web Services Security: SOAP Message Se-
curity v1.0, OASIS Standard. http:
//docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-soap-message-se%
curity-1.0.pdf .

3. I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The
Physiology of the Grid: An Open Grid Services Ar-
chitecture for Distributed Systems Integration. Open
Grid Service Infrastructure WG, Global Grid Forum,
June 2002.

4. Web Services Resource Framework.http://
www.globus.org/wsrf/ .

Proceedings of the UK e-Science All Hands Meeting 2004, © EPSRC Sept 2004, ISBN 1-904425-21-6

904

http://wwws.sun.com/
http://www.globus.org/wsrf/


5. Distributed Resource Management Application
API Working Group. http://www.drmaa.
org/ .

6. Job Submission Description Language Working
Group. https://forge.gridforum.org/
projects/jsdl-wg .

7. Imperial College e-Science Network Infrastruc-
ture Project. http://www.lesc.ic.ac.uk/
iceni/ .

8. Platform LSF. http://www.platform.com/
products/LSF .

9. Condor Team. Condor Project Homepage.http:
//www.cs.wisc.edu/condor .

10. The ClassAd Language Reference Manual Version
2.1. http://www.cs.wisc.edu/condor/
classad/refman// .

11. The DataGrid Project. http://www.
eu-datagrid.org/ .

12. The Globus Project. http://www.globus.
org/ .

13. Gregor von Laszewski, Ian Foster, Jarek Gawor, War-
ren Smith, and Steve Tuecke. CoG Kits: A Bridge be-
tween Commodity Distributed Computing and High-
Performance Grids. InACM Java Grande 2000 Con-
ference, pages 97–106, San Francisco, CA, 3-5 June
2000.

Proceedings of the UK e-Science All Hands Meeting 2004, © EPSRC Sept 2004, ISBN 1-904425-21-6

905

http://www.drmaa
https://forge.gridforum.org/
http://www.lesc.ic.ac.uk/
http://www.platform.com/
http://www.cs.wisc.edu/condor/
http://www
http://www.globus

