
Efficient Distributed Simulation of a Communication Switch with Bursty
Sources and Losses

A.S.McGough and I. Mitrani
Computing Science Department, University of Newcastle,

Newcastle upon Tyne, NE1 7RU
a.s.mcgough@ncl.ac.uk isi.mitrani@ncl.ac.uk

Abstract

Algorithms for simulating an ATM switch on a dis-
tributed memory multiprocessor are described. These in-
clude parallel generation of bursty arrival streams, along
with the marking and deleting of lost cells due to buffer
overflows. These algorithms increase the amount of com-
putation carried out independently by each processor, and
reduce the communication between the processors. When
the number of cells lost is relatively small, the run time of
the simulation is approximately , where is the
total number of cells simulated and is the number of pro-
cessors. The cells are processed in intervals of fixed length;
that length affects the structure and the performance of the
algorithms.

1. Introduction

Consider an ATM switch with transmission capacity
cells / second (i.e. a service time of). The
switch contains a finite buffer of size cells, which is filled
from arrivals generated by merging independent bursty
sources of the “on”/“off” type, see figure 1 below. Sup-
pose that the performancemeasure of interest is the cell loss
probability, i.e. the long–term fraction of cells that are lost
due to buffer overflow. If the “on”, “off” and cell inter-
arrival intervals for the different sources are different and
generally distributed, that quantity cannot normally be de-
termined by analysis. On the other hand, estimating the loss
probability by simulation tends to be a very time-consuming
task because the overflow events are usually rare and so a
large number of cell arrivals and departures have to be gen-
erated in order to obtain an accurate result.
In order to reduce these large simulation times, consid-

erable effort has gone into exploring parallel computation
techniques. In particular, the parallel simulation of Multi-
plexers, as used in ATM networks, has attracted much at-

sources
Bursty

size

Buffer

Figure 1. ATM Switch with multiple sources

tention over recent years. Space-parallel simulation tech-
niques, where different nodes of the network are allocated to
different processors, have been proposed in [6, 7, 8]. These
techniques do not help in speeding up a long simulation of
a single ATM node. Nikolaidis [9] and Fujimoto [10] pre-
sented a method of simulating an ATM multiplexer at the
level of bursts. Since individual cells are not simulated, this
approach can only provide approximate results or ones that
require particular assumptions. Wang and Abrams [11] pre-
sented another approximate method for the parallel simu-
lation of the G/G/1/n queue. That method becomes exact
when the service times are constant but it requires the com-
putation of all departure times as well as all arrivals. A simi-
lar approach to ours is adopted by Andradóttir and Ott [13].
They apply time-parallel and relaxation techniques to the
simulation of queuing networks. However, they do not han-
dle bursty arrivals and do not report the achieved speedup in
either shared-memory or distributed environment. Chen [3]
presents an alternative approach to the parallel simulation
of finite buffers, based on longest-path algorithms to com-
pute departure times. That approach does not apply easily
to our model.
A parallel simulation algorithm for the present model

was described in [5]. It used the parallel prefix approach

P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

. .

Queue
size

time

Interval 2Interval 1 Interval 3

Figure 2. The division of the sample path into intervals

of [1, 12], together with parallel merge and relaxation tech-
niques for deciding which cells are lost. That algorithm
achieved almost linear speedup on a shared-memory mul-
tiprocessor. However, if it is run without modification on
a distributed memory multiprocessor, such as a cluster of
workstations connected by a fast Ethernet, the benefits of
parallelism are overcome by the communication overheads.
While generating the merged arrival stream, large amounts
of data have to be passed around among the processors. In
that environment we have found that increasing the number
of processors (up to eight) does not reduce significantly the
simulation execution time.
That is why it is necessary to develop different and more

efficient parallel simulation algorithms, which is the subject
of this paper. The emphasis of the new approach is to use
a method for generating arrivals which allows the majority
of cells to be generated and handled on the correct proces-
sor. This allows the merging of streams and the marking of
lost cells to be done locally, thus significantly reducing the
communication costs.

1.1. Outline of the distributed algorithm

The total simulation period is broken up into intervals
of seconds. Within each interval the work is divided ap-
proximately equally between the processors. Figure 2 il-
lustrates a sample path where a simulation over the interval
to is split among four processors.
If the chosen value for is great enough then the aver-

age amount of work performed by each processor will be
approximately the same. This coupled with low commu-
nication costs between processors allows the simulation to
reach almost linear speed–up.
The actions taken by the processors in parallel are:

1. Generate all arrivals for the next seconds. Pro-
cessor first computes the “on”and “off”periods for
arrival source that fall within its own sub-interval of
the time line. It can then compute the list of arrivals
from that source which occur during this sub-interval.

These two steps are performed using the modified ver-
sion of the parallel prefix algorithm described in sec-
tion 2 below. Some arrivals may be generated on the
incorrect processor due to the random nature of the ar-
rival sources. These arrivals need to be communicated
to the correct processor. Provided that the number of
such cells is small, in comparison with the total num-
ber of arrivals generated, this should have little effect
on the performance of the simulation. Repeating these
steps for all sources and merging the resulting cells
produces the total arrival stream that processor needs
to handle.

2. Mark and remove lost cells. The algorithm used
for this task is an adaptation of an algorithm introduced
in [5]. It can be used with an arbitrary sized collection
of arrivals, and works by generating a step function of
the queue size over a given time interval. Each proces-
sor generates a portion of the sample path correspond-
ing to its own sub-interval, assuming some initial con-
ditions for the state of the queue. That step is iterated
using new initial conditions obtained from the previ-
ous processor and passing new initial conditions to the
next one. This process, known as ’relaxation’, contin-
ues until two consecutive iterations produce identical
sample paths. If the cell loss fraction is small then the
number of iterations should be small.

The technique of using relaxation to refine the current
state of knowledge of individual processors was discussed,
in general context, by Chandy and Sherman [4]. Relaxation
does not always help, but it can be implemented efficiently
in our case.
To obtain a point estimate and a confidence interval for

the cell loss probability, it is enough to compute the num-
ber of cells, L, that are lost during the simulation period. It
should be pointed out, however, that with simple modifica-
tions the above algorithms can generate other performance
measures for the ATM switch, such as average buffer occu-
pancy or average cell response time.

It is also worth pointing out that these algorithms can
be modified to accommodate more general models, includ-
ing cells of different priority types, reservation of buffer
space for higher priority cells, and sources with depen-
dent “on”and “off”periods (provided that the “on”periods
are large compared to the inter-arrival times).
Finally, it should be mentioned that although we have

considered a continuous time model (arrival instants are real
and transmissions can start at arbitrary points) for this work,
the method can easily be adapted to a discrete–time model.
The following sections provide a more detailed descrip-

tion of the stages described above.

2. Generation of arrival instances

It is assumed that the bursty nature of each source can be
simulated by an alternating sequence of “on” periods during
which cells arrive, and “off” periods without arrivals. All
sources start with an “on” period. The th “on” , “off” and
inter-arrival periods for source are denoted by ,
and , respectively. These are sequences of i.i.d. random
variables with general distributions.
The generation of a sequence of arrivals during an inter-

val of length for source is carried out in two steps. First,
the “off” periods are ignored and an ‘unadjusted’ arrival se-
quence is calculated as if the source was “on” all the time
(see the lower part of figure 3, where the “off” periods have
been condensed to 0).
The ‘unadjusted’ arrival time of cell from source ,
, satisfies the following recurrence relation:

(1)

where is the inter-arrival interval between cells
and . These recurrences can be solved in parallel by
applying the parallel prefix algorithm (see [1]). A total of
arrival instants can be calculated on processors in time

on the order of when , the number of arrivals
that are generated from source over the interval of length
, is much larger than .
The second step consists of adjusting by inserting

the missing “off” periods in the appropriate positions (see
upper part of figure 2, where the inserted “off”periods are
denoted by). To ascertain how many “off” periods oc-
curred before a particular ‘unadjusted’ arrival time, the in-
dex of the “on” period during which occurs must be de-
termined. Given the lengths of the consecutive “on” periods
for source , , we need to find, for each , an index
such that

(2)

where an empty sum is 0 by definition.

Figure 3. Unadjusted and adjusted arrival
instants

Having solved the inequalities (2) for , the actual arrival
instant of cell from source , , is obtained from

(3)

The adjustment procedure described above assumes that
the realizations of and have been pre-computed.
Since the total number of “on” and “off” periods that are
generated during the simulation is typically much smaller
than the total number of cells, we treat that pre-computation
as an overhead. Of course, the sequences of partial sums for

and can also be obtained by means of the parallel
prefix algorithm, and infact are in this case.
Solving (2) and (3) is essentially equivalent to merging

the two sequences of arrival and “off” instants. Since there
are many more arrival instances than “on”/ “off”periods,
that operation together with the calculation of the actual
arrival times, can be carried out on processors in time
approximately equal to .

2.1. Generation of “off”and “on”periods

The first step of the new algorithm for generating the
arrival instances is to compute the prefix sums of “on”and
“off”periods involved in (2) and (3). Each of the proces-
sors computes all “on”and “off”instants that occur within
a sub-interval of length . For processor that sub-
interval is , . All proces-
sors follow the four stages of the algorithm outlined below.
For simplicity the algorithm only describes the computation
of the first interval of the simulation. All other intervals are
processed in a similar manner.

1. Processor assumes that the beginning of its sub-
interval, , is the start of an “on”period for
every source. It then computes sets of partial sums
and according to the following equations.

(4)

(5)

where indexes the source and indexes the “on”/
“off”pair. Partial sums are computed until

(6)
Denote the values of and which satisfy (6) by

and respectively.

2. Processor sends and for each to proces-
sors . It also receives similar values
from all the processors . Processor com-
putes

(7)

(8)

3. The true “on”and “off”starting points are computed as

(9)

(10)

4. Find the last pair () which satisfies

(11)

Copy that, and all subsequent pairs (), to pro-
cessor . Receive similar pairs from processor

. This is necessary for computing the burst of
arrivals that may straddle the boundary between the
th and the st sub-intervals. Processor then re-
numbers its (increasing) sequences and such
that . Thus the first “on”-
“off”cycle for processor in fact starts before the be-
ginning of its sub-interval.

2.2. Distributed generation of arrival instances

In this section we present the algorithm for generating
the arrival instances from all sources. To do that for source
, start by eliminating all corresponding “off”periods and
consider the “on”periods joined end to end. On this ‘com-
pressed’ time line the start of the ’th sub-interval, for
source , moves from to

if is in
an “off”period
otherwise.

The arrival generation algorithm proceeds as follows.

1. Processor starts by assuming that there is an arrival
instance for source at time . It computes the par-
tial sums

(12)

until
(13)

Denote the first value which satisfies (13) by .

2. Processor sends for each to processors
. It also receives similar values from all

the processors . Processor computes

(14)

3. The arrival instances for source on the ‘compressed’
time line are computed as

(15)

4. Any arrival instances which satisfy

(16)

are sent to processor , where they will finish their
processing.

5. The true arrival time can now be computed by first
finding the index of the relevant “on”period. That
index satisfies

(17)

Adjust by adding to it the sum of all previous
“off”periods:

(18)

In practice, when the sub-interval length is large
compared to the inter-arrival times, step 4 only requires ar-
rivals to be passes to processor .
The arrivals from all sources are then merged to pro-

duce the full list of arrivals within the th sub-interval.

3. Mark and remove lost cells

Denote, for convenience, the merged arrival instants in
the current sub-interval by , (in practice,
the numbering carries on sequentially from one sub-interval
to the next). It is now necessary to determine, in parallel,
which cells are accepted into the buffer and which are lost
as a result of finding it full. An algorithm to achieve this
result is presented below.

3.1. Acceptance Algorithm

Processor now computes the queue size at the arrival
instants in its sub-interval, assuming some initial condi-
tions. The latter are then refined in subsequent iterations.
For the purpose of determining the lost cells, it is only nec-
essary to calculate some of the departure instants.
For cell within a sub-interval, let be the queue size

‘just before’ ; this is the queue size ‘seen’ by the incom-
ing cell. Also, let be the time of the last departure before

if ; otherwise . For the first cell, assume
initially that and . This definition of
is illustrated in figure 4. The actual departure times are
marked on for clarity.

Figure 4. The values of

Clearly, cell is accepted if and is lost other-
wise. Denote by the indicator of that event:

if
if

Let be the number of cell transmissions that can be com-
pleted in the interval :

where is the largest integer not exceeding .
Now, the values of and are computed by means of

the following recurrence relations:

(19)

if
if (20)

These equations rely on the fact that cell service times
are constant. If that is not the case, they would be modified
in a straightforward manner, but would still remain recur-
rences.
Processor solves (19) and (20) for its sub-interval, us-

ing known or assumed initial values of and (in the
case of processor 1, these are known from the previous in-
terval; the other processors start by assuming that their first
cell arrives into an empty buffer). The computed values of
and for the last cell in the sub-interval are then passed

to processor and serve as the latter’s new initial values.
This procedure is iterated until the new initial conditions of
all processors are the same as the old ones. In the worst case
iterations are required, but when the number of losses is

small, fewer iterations suffice.
There are several strategies that can be employed to re-

duce the amount of computation performed by each proces-
sor during an iteration. They are based on the following
ideas:
1. Let be the total idle time during sub-interval , as

computed by processor in one of the iterations:

(21)

where the summation is over all arrival instants in the sub-
interval, and if the event occurs, 0 otherwise.
Suppose that , i.e. a full buffer can be cleared
during an interval of length . Then the index of the last
accepted cell in the sub-interval, and the queue size seen
by that last cell, are independent of the initial conditions.
Hence, the new initial conditions for processor are
correct and it can perform its final iteration, regardless of
the future state of processor .
2. More generally, if for a given iteration the increase of

the initial queue size (passed from processor) does not
exceed the old value of , then the new initial conditions
for processor will be the same as the old ones.
3. If consecutive cells, ,

have the property that none of them are lost and none of
them, except perhaps the first, finds an empty buffer, then
that collection can be treated as a single ‘packet’ for the
purpose of calculating the evolution of the queuing process.
Instead of computing pairs of recurrences (19) and (20), a
single pair is evaluated:

(22)

(23)

where

The effectiveness of this technique has not been evalu-
ated empirically. However, it appears to have the potential
for reducing the amount of computation significantly.
Figure 5 illustrates the application of 1& 2 above, where

the interval is 20 seconds long and the buffer size is 3,
with the work distributed over four processors. During the
first iteration each processor computes the queue size tra-
jectory for all of the cells in its sub-interval. Note that the
algorithm only computes the queue size immediately before
and after a cell arrival, the departures have been added to the

Processor 2 Processor 3 Processor 4Queue
size

Processor 1

time

Processor 2 Processor 3 Processor 4Queue
size

Processor 1

time

Iteration 2

Iteration 1

Figure 5. Example graph of queue sizes

diagram for clarity. In the case of processor 4 its fourth ar-
rival will exceed the queue size, marked in the diagram as
a shaded block. However in a future iteration this cell may
be accepted, thus it is marked as lost here but is still kept in
the list of arrivals.

Processor 2 contains enough idle time to absorb one cell
in the queue from the previous processor. Processor 3 con-
tains enough idle time to absorb any valid queue size from
the previous processor. All cells that arrive to processor 3
after idle time can be computed as final and the end state
of its sub-interval is finalized.

In iteration 2 the end state (queue size after the last ar-
rival and time of the last departure) from each processor is
passed onto the next processor as the start state. Proces-
sor 2 receives a queue of size 1 from processor 1 and needs
only to compute those cells that arrive before the first point
where the queue size reaches zero, likewise for processor
3. Processor 4 receives a queue size of one and marks cell
4 as lost. It is removed from the arrival list and does not
appear in the diagram for the final iteration. The end condi-
tions are now passed from processor to processor ,
as these new start conditions are identical for all processors
the iterations terminate.

4. Experimental Results

The results were generated from running the test pro-
gram on a cluster of eight PentiumII 233Mhz workstations,
connected by fast Ethernet. The simulation was written us-
ing the LAM [14], implementation of MPI [15], running
under Linux. Experimental results were also produced from
the same cluster with the addition of a shared memory quad
processor system running at 450MHz. This allows the num-
ber of processors to be increased to twelve.
Varying numbers of processors were used to produce re-

sults for two ATM systems, the first having eight bursty
sources and the second having 24 sources. The offered load
was chosen to ensure that the fraction of lost cells was just
under . Each simulation run represents seconds of
simulated time. During that time, approximately
cell arrivals occured in all cases. For simplicity, the cell
inter-arrival times, the “on”and “off”periods were assumed
to be exponentially distributed, with the cell transmission
time assumed to be constant.
Since the object of this study is to examine the efficiency

of the parallel simulation algorithms and the speedups that
can be achieved, the only metric plotted is the ratio ,
where is the execution time of the best sequential sim-

B = seconds
B = seconds

B = seconds

Processors

Sp
ee
du
p
=

121086420

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

Figure 6. Results from a cluster with 8 input sources

ulation run on a single processor and is the execution
time of the parallel simulation run on processors. This
ratio is commonly known as the ‘speedup’ achieved by the
algorithm. Note that , the execution time of the parallel
simulation run on 1 processor, is normally larger than . If

is proportional to , the parallel algorithm is said to
achieve ‘linear speedup’. Statistics about the lost cells were
collected, but neither the point estimates nor the confidence
intervals are displayed in the following graphs.
Figures 6 and 7 illustrate the speedup achieved as a func-

tion of the number of processors. Each figure shows the re-
sults for running the simulation with different interval sizes
. Figure 6 illustrates the situation with eight input sources,

showing almost linear speedup for all interval lengths. Al-
tering the interval length appears to have little effect on the
overall speedup of the simulation. For very large intervals
there is a difference, although slight. There is an apparent
jump in performance between seven and eight processors,
when the batch size is . This seems to be a conse-
quence of the removal of page swapping as the amount of
data handled by each processor decreases as the processor
count increases.
Processors nine to twelve are included by using the use

of the quad processor workstation. These processors are
faster than the others and therefore compute their sections
of the simulation path quicker. However, since there is no
attempt at load balancing, the trend of the speedup remains
as before.
Figure 7 shows similar results for the case of 24 bursty

input sources. Here again we observe an almost linear
speedup. The larger jump between seven and eight proces-

sors for is present here too, and probably has
the same explanation.

5. Conclusion

We have demonstrated that a large sample path for a non-
trivial communication system can be simulated in parallel
on a distributed cluster of processors. Moreover, the par-
allelization is efficient, in the sense that a linear speedup is
achieved. The major obstacle that has been overcome by the
algorithms presented here is the large amount of data com-
municated between the processors. Normally the commu-
nication overheads swamp the benefits of parallelism. We
have been able to eliminate most of the overheads by dele-
gating more intelligence to the individual processors. Each
processor is now able to decide accurately which arrivals to
generate, so that they can be handled locally.
Dependencies between sub-intervals, due to lost cells,

require some repetition of work performed by processors.
However these iterations can be carried out efficiently with-
out destroying the benefits of parallel simulation.
The relaxation techniques described here are not re-

stricted to this model. The idea that each processor can
work on an interval of the sample path, subsequently re-
fining its knowledge in light of information received from
other processors, can be applied to many different systems.
However, the details of that allocation can have an impor-
tant effect on performance. Unless all intervals converge
quickly to their final states, the advantage of parallel pro-
cessing can be lost.

B = seconds
B = seconds

B = seconds

Processors

Sp
ee
du
p
=

87654321

3

2.5

2

1.5

1

0.5

0

Figure 7. Results from a cluster with 24 input sources

References

[1] A.G. Greenberg, B.D. Lubachevsky, and I. Mitrani.
Algorithms for Unboundedly Parallel Simulations,
ACM TOCS, 91(9):201-221, August 1991.

[2] C.P. Kruskal, L. Rudolph and M. Snir. The Power of
Parallel Prefix, IEEE Trans. Comp., 85(34):965-968,
October 1985.

[3] L. Chen. Parallel Simulation by multi-instruction,
longest-path algorithms, Queueing Systems, 97(27 no
1-2):37-54, 1997.

[4] K.M. Chandy, R. Sherman. Space-Time and Simula-
tion, Proceedings of the SCS Multiconference on Dis-
tributed Simulation, Tampa, Florida, Society for Com-
puter Simulation, 89:53-57, July 1989.

[5] A.S. McGough, I. Mitrani. Parallel Simulation of
ATM Switches using Relaxation, IFIP ATM’98,
98(54), July 1998.

[6] Z. Xiao, B. Unger, R. Simmonds, J. Cleary. Sched-
uled Critical Channels in Conservative Parallel Dis-
crete Event Simulation, PADS ’99, 99:20-28, May
1999.

[7] C. Williamson, B. Unger, Z. Xiao. Parallel Simulation
of ATM Networks: Case Study and Lessons Learned,
CCBR ’98, 98:78-88, June 1998.

[8] C.D. Carothers, K.S. Perumalla. Efficient Optimistic
Parallel Simulations using Reverse Computation,
PADS ’99, 99:126-135, May 1999.

[9] I. Nikolaidis, R. Fujimoto, C.A. Cooper. Time-Parallel
Simulation of Cascaded Statistical Multiplexers, ACM
Sigmetrics, 94:231-239, May 1994.

[10] R.M. Fujimoto, I. Nikolaidis, C.A. Cooper. Paral-
lel Simulation of Statistical Multiplexers, Discrete
Event Dynamic Systems-Theory and Applications,
95(5):115-140, April 1995.

[11] J.J. Wang, M. Abrams. Approximate Time-Parallel
Simulation of Queuing systems with losses, 1992
Winter Simulation Conference, 92:700-708, Decem-
ber 1992.

[12] F. Baccelli, M. Canales. Parallel Simulation of
Stochastic Petri Nets Using Recurrence Equations,
ACM Transactions on Modeling and Computer Sim-
ulation, 93(Vol. 3, No. 1):20-41, January 1993.

[13] S. Andradóttir, T.J. Ott, Time-Segmentation Parallel
Simulation of Networks of Queues with Loss or Com-
munication Blocking, ACM Transactions on Model-
ing and Computer Simulation, 95(Vol. 5, No. 4):269-
305, October 1995.

[14] LAM / MPI Parallel Computing, http://www.
mpi.nd.edu/lam/, 09/1999.

[15] Message Passing Interface Forum, http://www.mpi-
forum.org/, 09/1999.

